9,226 research outputs found
On the stability and growth of single myelin figures
Myelin figures are long thin cylindrical structures that typically grow as a
dense tangle when water is added to the concentrated lamellar phase of certain
surfactants. We show that, starting from a well-ordered initial state, single
myelin figures can be produced in isolation thus allowing a detailed study of
their growth and stability. These structures grow with their base at the
exposed edges of bilayer stacks from which material is transported into the
myelin. Myelins only form and grow in the presence of a driving stress; when
the stress is removed, the myelins retract.Comment: 4 pages, 8 figures. Revised version, 1 new figure, additional
reference
Bose-Einstein Condensation in the presence of an artificial spin-orbit interaction
Bose-Einstein condensation in the presence of a synthetic spin-momentum
interaction is considered, focusing on the case where a Dirac or Rashba
potential is generated via a tripod scheme. We found that the ground states can
be either plane wave states or superpositions of them, each characterized by
their unique density distributions.Comment: 5 pages, no figure
Tree-level electron-photon interactions in graphene
Graphene's low-energy electronic excitations obey a 2+1 dimensional Dirac
Hamiltonian. After extending this Hamiltonian to include interactions with a
quantized electromagnetic field, we calculate the amplitude associated with the
simplest, tree-level Feynman diagram: the vertex connecting a photon with two
electrons. This amplitude leads to analytic expressions for the 3D angular
dependence of photon emission, the photon-mediated electron-hole recombination
rate, and corrections to graphene's opacity and dynamic
conductivity for situations away from thermal equilibrium, as
would occur in a graphene laser. We find that Ohmic dissipation in perfect
graphene can be attributed to spontaneous emission.Comment: 5 pages, 3 figure
Self-Similar Magnetocentrifugal Disk Winds with Cylindrical Asymptotics
We construct a two-parameter family of models for self-collimated, radially
self-similar magnetized outflows from accretion disks. A flow at zero initial
poloidal speed leaves the surface of a rotating disk and is accelerated and
redirected toward the pole by helical magnetic fields threading the disk. At
large distances from the disk, the flow streamlines asymptote to wrap around
the surfaces of nested cylinders. In constrast to previous disk wind modeling,
we have explicitly implemented the cylindrical asymptotic boundary condition to
examine the consequences for flow dynamics. The solutions are characterized by
the logarithmic gradient of the magnetic field strength and the ratios between
the footpoint radius R_0 and asymptotic radius R_1 of streamlines; the Alfven
radius must be found as an eigenvalue. Cylindrical solutions require the
magnetic field to drop less steeply than 1/R. We find that the asymptotic
poloidal speed on any streamline is typically just a few tenths of the Kepler
speed at the corresponding disk footpoint. The asymptotic toroidal Alfven speed
is, however, a few times the footpoint Kepler speed. We discuss the
implications of the models for interpretations of observed optical jets and
molecular outflows from young stellar systems. We suggest that the difficulty
of achieving strong collimation in vector velocity simultaneously with a final
speed comparable to the disk rotation rate argues against isolated jets and in
favor of models with broader winds.Comment: 39 pages, Latex (uses AAS Latex macros), 6 eps figures, postscript
preprint with embedded figures available from
http://www.astro.umd.edu/~ostriker/professional/publications.html , to appear
in ApJ 9/1/9
Lepton flavor violating decays of vector mesons
We estimate the rates of lepton flavor violating decays of the vector mesons
. The theoretical tools are based on an effective
Lagrangian approach without referring to any specific realization of the
physics beyond the standard model responsible for lepton flavor violation
(\Lfv). The effective lepton-vector meson couplings are extracted from the
existing experimental bounds on the nuclear conversion. In
particular, we derive an upper limit for the \Lfv branching ratio which is much more stringent than
the recent experimental result
presented by the SND Collaboration. Very tiny limits on \Lfv decays of vector
mesons derived in this letter make direct experimental observation of these
processes unrealistic.Comment: 3 pages, 1 figure, accepted for publication in Phys. Rev.
Electromagnetic Transition Form Factors of Mesons
Using a counting scheme which treats pseudoscalar and vector mesons on equal
footing, the decays of the narrow light vector mesons omega and phi into a
dilepton and a pseudoscalar pi-meson or eta-meson, respectively, are
calculated. Thereby, all required parameters could be determined by other
reactions so that one has predictive power for the considered decays. The
calculated partial decay widths are in very good agreement with the
experimental data.Comment: Talk given at the 33rd International School of Nuclear Physics (From
Quarks and Gluons to Hadrons and Nuclei) in Erice (Italy
Instability of Myelin Tubes under Dehydration: deswelling of layered cylindrical structures
We report experimental observations of an undulational instability of myelin
figures. Motivated by this, we examine theoretically the deformation and
possible instability of concentric, cylindrical, multi-lamellar membrane
structures. Under conditions of osmotic stress (swelling or dehydration), we
find a stable, deformed state in which the layer deformation is given by \delta
R ~ r^{\sqrt{B_A/(hB)}}, where B_A is the area compression modulus, B is the
inter-layer compression modulus, and h is the repeat distance of layers. Also,
above a finite threshold of dehydration (or osmotic stress), we find that the
system becomes unstable to undulations, first with a characteristic wavelength
of order \sqrt{xi d_0}, where xi is the standard smectic penetration depth and
d_0 is the thickness of dehydrated region.Comment: 5 pages + 3 figures [revtex 4
High-harmonic generation from arbitrarily oriented diatomic molecules including nuclear motion and field-free alignment
We present a theoretical model of high-harmonic generation from diatomic
molecules. The theory includes effects of alignment as well as nuclear motion
and is used to predict results for N, O, H and D. The results
show that the alignment dependence of high-harmonics is governed by the
symmetry of the highest occupied molecular orbital and that the inclusion of
the nuclear motion in the theoretical description generally reduces the
intensity of the harmonic radiation. We compare our model with experimental
results on N and O, and obtain very good agreement.Comment: 12 pages, 8 figures, 2 tables; legends revised on Figs. 1,3,4,6 and
Faithful fermionic representations of the Kondo lattice model
We study the Kondo lattice model using a class of canonical transformations
that allow us to faithfully represent the model entirely in terms of fermions
without constraints. The transformations generate interacting theories that we
study using mean field theory. Of particular interest is a new manifestly
O(3)-symmetric representation in terms of Majorana fermions at half-filling on
bipartite lattices. This representation suggests a natural O(3)-symmetric trial
state that is investigated and characterized as a gapped spin liquid.Comment: 11 pages, 2 figures, minor update
- …