27 research outputs found
Agmatine prevents the Ca2+-dependent induction of permeability transition in rat brain mitochondria
The arginine metabolite agmatine is able to protect brain mitochondria against the drop in energy capacity by the Ca(2+)-dependent induction of permeability transition (MPT) in rat brain mitochondria. At normal levels, the amine maintains the respiratory control index and ADP/O ratio and prevents mitochondrial colloid-osmotic swelling and any electrical potential (DeltaPsi) drop. MPT is due to oxidative stress induced by the interaction of Ca(2+) with the mitochondrial membrane, leading to the production of hydrogen peroxide and, subsequently, other reactive oxygen species (ROS) such as hydroxyl radicals. This production of ROS induces oxidation of sulfhydryl groups, in particular those of two critical cysteines, most probably located on adenine nucleotide translocase, and also oxidation of pyridine nucleotides, resulting in transition pore opening. The protective effect of agmatine is attributable to a scavenging effect on the most toxic ROS, i.e., the hydroxyl radical, thus preventing oxidative stress and consequent bioenergetic collapse
Further characterization of agmatine binding to mitochondrial membranes: involvement of imidazoline I2 receptor.
Agmatine, a divalent diamine with two positive charges at physiological pH, is transported into the matrix of liver mitochondria by an energy-dependent mechanism, the driving force of which is the electrical membrane potential. Its binding to mitochondrial membranes is studied by applying a thermodynamic treatment of ligand-receptor interactions on the analyses of Scatchard and Hill. The presence of two mono-coordinated binding sites S(1) and S(2), with a negative influence of S(2) on S(1), has been demonstrated. The calculated binding energy is characteristic for weak interactions. S(1) exhibits a lower binding capacity and higher binding affinity both of about two orders of magnitude than S(2). Experiments with idazoxan, a ligand of the mitochondrial imidazoline receptor I(2), demonstrate that S(1) site is localized on this receptor while S(2) is localized on the transport system. S(1) would act as a sensor of exogenous agmatine concentration, thus modulating the transport of the amine by its binding to S(2)
Novel Reversible Monoamine Oxidase A Inhibitors: Highly Potent and Selective 3-(1H-Pyrrol-3-yl)-2-oxazolidinones
Monoamine oxidases (MAOs) are involved in various psychiatric and neurodegenerative disorders; hence, MAO inhibitors are useful agents in the therapy of Parkinson's disease, Alzheimer's dementia, and depression syndrome. Herein we report a novel series of 3-(1H-pyrrol-3-yl)-2-oxazolidinones 3-7 as reversible, highly potent and selective anti-MAO-A agents. In particular, 4b, 5b, and 4c showed a Ki-MAO-A of 0.6, 0.8, and I nM, respectively, 4c being 200000-fold selective for MAO-A with respect to MAO-B