1,605 research outputs found

    Magnetic properties of PrCu2_2 at high pressure

    Full text link
    We report a study of the low-temperature high-pressure phase diagram of the intermetallic compound PrCu2_2, by means of molecular-field calculations and 63,65^{63,65}Cu nuclear-quadrupole-resonance (NQR) measurements under pressure. The pressure-induced magnetically-ordered phase can be accounted for by considering the influence of the crystal electric field on the 4f4f electron orbitals of the Pr3+^{3+} ions and by introducing a pressure-dependent exchange interaction between the corresponding local magnetic moments. Our experimental data suggest that the order in the induced antiferromagnetic phase is incommensurate. The role of magnetic fluctuations both at high and low pressures is also discussed.Comment: 7 pages, 6 figures, submitted to Eur. Phys. J.

    Progress towards Bell-type polarization experiment with thermal neutrons

    Get PDF
    Experimental tests of Bell-type inequalities distinguishing between quantum mechanics and local realistic theories remain of considerable interest if performed on massive particles, for which no conclusive result has yet been obtained. Only two-particle experiments may specifically test the concept of spatial nonlocality in quantum theory, whereas single-particle experiments may generally test the concept of quantum noncontextuality. Here we have performed the first Bell-type experiment with a beam of thermal-neutron pairs in the singlet state of spin, as originally suggested by J. S. Bell. These measurements confirm the quantum-theoretical predictions, in agreement with the results of the well-known polarization experiments carried out on optical photons years ago

    Optical properties of the charge-density-wave polychalcogenide compounds R2R_2Te5_5 (RR=Nd, Sm and Gd)

    Full text link
    We investigate the rare-earth polychalcogenide R2R_2Te5_5 (RR=Nd, Sm and Gd) charge-density-wave (CDW) compounds by optical methods. From the absorption spectrum we extract the excitation energy of the CDW gap and estimate the fraction of the Fermi surface which is gapped by the formation of the CDW condensate. In analogy to previous findings on the related RRTen_n (n=2 and 3) families, we establish the progressive closing of the CDW gap and the moderate enhancement of the metallic component upon chemically compressing the lattice

    Comparison of the TaqMan and LightCycler systems in pharmacogenetic testing: evaluation of the CYP2C9*2/*3 polymorphisms.

    Get PDF
    Background: Pharmacogenetic testing for drugmetabolizing enzymes is not yet widely used in clinical practice. Methods: In an attempt to facilitate the application of this procedure, we have compared two real-time PCRbased methods, the TaqMan_ and the LightCycler_ for the pharmacogenetic evaluation of CYP2C9*2/*3 polymorphisms. Results and Conclusion: Both procedures are suitable for pharmacogenetic studies. The TaqMan procedure was less expensive in terms of cost per sample, but the TaqMan apparatus is more expensive than the LightCycler apparatus

    Further evidence of antibunching of two coherent beams of fermions

    Full text link
    We describe an experiment confirming the evidence of the antibunching effect on a beam of non interacting thermal neutrons. The comparison between the results recorded with a high energy-resolution source of neutrons and those recorded with a broad energy-resolution source enables us to clarify the role played by the beam coherence in the occurrence of the antibunching effect.Comment: 4 pages, 3 figure

    Direct experimental evidence of free fermion antibunching

    Full text link
    Fermion antibunching was observed on a beam of free noninteracting neutrons. A monochromatic beam of thermal neutrons was first split by a graphite single crystal, then fed to two detectors, displaying a reduced coincidence rate. The result is a fermionic complement to the Hanbury Brown and Twiss effect for photons.Comment: 4 pages, 2 figure

    Optical properties of the Ce and La di-telluride charge density wave compounds

    Full text link
    The La and Ce di-tellurides LaTe2_2 and CeTe2_2 are deep in the charge-density-wave (CDW) ground state even at 300 K. We have collected their electrodynamic response over a broad spectral range from the far infrared up to the ultraviolet. We establish the energy scale of the single particle excitation across the CDW gap. Moreover, we find that the CDW collective state gaps a very large portion of the Fermi surface. Similarly to the related rare earth tri-tellurides, we envisage that interactions and Umklapp processes play a role in the onset of the CDW broken symmetry ground state
    corecore