620 research outputs found
Evolution Restricts the Coexistence of Specialists and Generalists - The Role of Trade-Off Structure
Environmental variability and adaptive foraging behavior have been shown to favor coexistence of specialists and generalists on an ecological time scale. This leaves unaddressed the question whether such coexistence can also be expected on an evolutionary time scale. In this article we study the attainability, through gradual evolution, of specialist-generalist coexistence, as well as the evolutionary stability of such communities when allowing for immigration. Our analysis shows that the potential for specialist-generalist coexistence is much more restricted than originally thought, and strongly depends on the trade-off structure assumed. We establish that ecological coexistence is less likely for species facing a trade-off between per capita reproduction in different habitats than when the trade-off acts on carrying capacities alone. We also demonstrate that coexistence is evolutionarily stable whenever it is ecologically stable, but that in most cases such coexistence cannot be reached through gradual evolution. We conclude that an evolutionarily stable community of specialists and generalists may only be created through immigration from elsewhere or through mutations of large effect. Our results highlight that trade-offs in fitness-determining traits can have counterintuitive effects on the evolution of specialization
Innate responses of the predatory mite Phytoseiulus persimilis to a herbivore-induced plant volatile
Effects of kinship or familiarity? Small thrips larvae experience lower predation risk only in groups of mixed-size siblings
In many species of insects, larvae are distributed in an aggregated fashion. As they may differ in size and size matters to predation risk, small larvae may be less likely to fall prey to predators when near large and therefore better-defended larvae. We hypothesize that the small larvae may profit even more when these large larvae are siblings. We tested this hypothesis on kinship-dependent survival in groups of larvae of the Western flower thrips (Frankliniella occidentalis) exposed to a predatory mite (Iphiseius degenerans). Our experiments showed that small larvae in sibling groups survive significantly better than in non-sibling groups, but only when such groups consisted of a mixture of small and large larvae. To test whether the survival effect we found is due to familiarity of thrips larvae growing up together (i.e. on one leaf), we also measured survival in sibling groups of larvae grown up on different leaves and in non-sibling groups of larvae grown up on the same leaf. These experiments showed an increased survival of small thrips larvae only in groups of sibling larvae from the same leaf. Non-sibling larvae did not show an increased survival when they come from the same leaf. Our results indicated that the increased survival in sibling groups was only partly due to the familiarity effect we tested. Growing up together did not return the same survival effect for non-siblings as it did for siblings. We conclude that growing up together is a necessary but not sufficient condition for discrimination in thrips larvae
Response of Predatory Mites to a Herbivore-Induced Plant Volatile: Genetic Variation for Context-Dependent Behaviour
Plants infested with herbivores release specific volatile compounds that are known to recruit natural enemies. The response of natural enemies to these volatiles may be either learned or genetically determined. We asked whether there is genetic variation in the response of the predatory mite Phytoseiulus persimilis to methyl salicylate (MeSa). MeSa is a volatile compound consistently produced by plants being attacked by the two-spotted spider mite, the prey of P. persimilis. We predicted that predators express genetically determined responses during long-distance migration where previously learned associations may have less value. Additionally, we asked whether these responses depend on odors from uninfested plants as a background to MeSa. To infer a genetic basis, we analyzed the variation in response to MeSa among iso-female lines of P. persimilis by using choice-tests that involved either (1) MeSa presented as a single compound or (2) MeSa with background-odor from uninfested lima bean plants. These tests were conducted for starved and satiated predators, i.e., two physiological states, one that approximates migration and another that mimics local patch exploration. We found variation among iso-female lines in the responses to MeSa, thus showing genetic variation for this behavior. The variation was more pronounced in the starved predators, thus indicating that P. persimilis relies on innate preferences when migrating. Background volatiles of uninfested plants changed the predators’ responses to MeSa in a manner that depended on physiological state and iso-female line. Thus, it is possible to select for context-dependent behavioral responses of natural enemies to plant volatiles
Predatory mite attraction to herbivore-induced plant odors is not a consequence of attraction to individual herbivore-induced plant volatiles
Predatory mites locate herbivorous mites, their prey, by the aid of herbivore-induced plant volatiles (HIPV). These HIPV differ with plant and/or herbivore species, and it is not well understood how predators cope with this variation. We hypothesized that predators are attracted to specific compounds in HIPV, and that they can identify these compounds in odor mixtures not previously experienced. To test this, we assessed the olfactory response of Phytoseiulus persimilis, a predatory mite that preys on the highly polyphagous herbivore Tetranychus urticae. The responses of the predatory mite to a dilution series of each of 30 structurally different compounds were tested. They mites responded to most of these compounds, but usually in an aversive way. Individual HIPV were no more attractive (or less repellent) than out-group compounds, i.e., volatiles not induced in plants fed upon by spider-mites. Only three samples were significantly attractive to the mites: octan-1-ol, not involved in indirect defense, and cis-3-hexen-1-ol and methyl salicylate, which are both induced by herbivory, but not specific for the herbivore that infests the plant. Attraction to individual compounds was low compared to the full HIPV blend from Lima bean. These results indicate that individual HIPV have no a priori meaning to the mites. Hence, there is no reason why they could profit from an ability to identify individual compounds in odor mixtures. Subsequent experiments confirmed that naive predatory mites do not prefer tomato HIPV, which included the attractive compound methyl salicylate, over the odor of an uninfested bean. However, upon associating each of these odors with food over a period of 15 min, both are preferred. The memory to this association wanes within 24 hr. We conclude that P. persimilis possesses a limited ability to identify individual spider mite-induced plant volatiles in odor mixtures. We suggest that predatory mites instead learn to respond to prey-associated mixtures of volatiles and, thus, to odor blends as a whole
- …