106 research outputs found

    Numerical study of radiative Maxwell viscoelastic magnetized flow from a stretching permeable sheet with the Cattaneo–Christov heat flux model

    Get PDF
    In this article, the Cattaneo-Christov heat flux model is implemented to study non-Fourier heat and mass transfer in the magnetohydrodynamic (MHD) flow of an upper convected Maxwell (UCM) fluid over a permeable stretching sheet under a transverse constant magnetic field. Thermal radiation and chemical reaction effects are also considered. The nonlinear partial differential conservation equations for mass, momentum, energy and species conservation are transformed with appropriate similarity variables into a system of coupled, highly nonlinear ordinary differential equations with appropriate boundary conditions. Numerical solutions have been presented for the influence of elasticity parameter (), magnetic parameter (M2), suction/injection parameter (λ), Prandtl number (Pr), conduction-radiation parameter (Rd), sheet stretching parameter (A), Schmidt number (Sc), chemical reaction parameter (γ_c), modified Deborah number with respect to relaxation time of heat flux (i.e. non-Fourier Deborah number) on velocity components, temperature and concentration profiles using the successive Taylor series linearization method (STSLM) utilizing Chebyshev interpolating polynomials and Gauss-Lobatto collocation. The effects of selected parameters on skin friction coefficient, Nusselt number and Sherwood number are also presented with the help of tables. Verification of the STSLM solutions is achieved with existing published results demonstrating close agreement. Further validation of skin friction coefficient, Nusselt number and Sherwood number values computed with STSLM is included using Mathematica software shooting quadrature

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    Role of magnetic force on the transportation of nanopowders including radiation

    No full text

    Investigation of convective nanomaterial flow and exergy drop considering CVFEM within a porous tank

    No full text
    corecore