26 research outputs found

    Therapeutic Effect of Sodium Selenite and Zinc Sulphate as Supplementary with Meglumine Antimoniate( Glucantime®) Against Cutaneous Leishmaniasis In BALB/C Mice

    Get PDF
    Background: Successful therapy of leishmaniasis depends on effective cellular immune response. We evaluated the effectiveness of sodium selenite and zinc sulphate as known immunomodulator materials, in combination with Glucantime® in treatment of cutaneous leishmaniasis lesions resulting from Leishmania ma­jor in susceptible animal model.Methods: Thirty three female mice weighing 18-20 g at the age of 7-8 week infected with L. major were randomly divided into 3 groups: group1: treated by sodium selenite (0.35 mg/kg for 30 days), group2: treated by zinc sulphate (2 mg/kg for 30 days) and group3: treated by distilled water (0.01 ml/gr body weight for 30 days) as control. All groups received Glucantime® as a standard anti- leishmanial agent (60 mg/kg, ip) for 14 days. To assess the results of treatment measurement of lesions size and parasitological tests were done weekly.Results: The lesion sizes increased continuously in sodium selenite group .Although, in zinc group did not in­crease compared to baseline But with considering the time- group interaction there was no significant difference between zinc and control group during this study. There was no difference between lesion sizes and Leishmanial loads in the interventional and control groups, respectively.Conclusion: Sodium selenite and zinc sulphate at mentioned doses and duration of treatment did not show any treatment effect on cutaneous leishmaniasis caused by L. major in BALB/c mice. Increasing the dose of supplements and considering the follow up period after treatment can help more certain conclusion

    Joint Observation of the Galactic Center with MAGIC and CTA-LST-1

    Get PDF
    MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes (IACTs), designed to detect very-high-energy gamma rays, and is operating in stereoscopic mode since 2009 at the Observatorio del Roque de Los Muchachos in La Palma, Spain. In 2018, the prototype IACT of the Large-Sized Telescope (LST-1) for the Cherenkov Telescope Array, a next-generation ground-based gamma-ray observatory, was inaugurated at the same site, at a distance of approximately 100 meters from the MAGIC telescopes. Using joint observations between MAGIC and LST-1, we developed a dedicated analysis pipeline and established the threefold telescope system via software, achieving the highest sensitivity in the northern hemisphere. Based on this enhanced performance, MAGIC and LST-1 have been jointly and regularly observing the Galactic Center, a region of paramount importance and complexity for IACTs. In particular, the gamma-ray emission from the dynamical center of the Milky Way is under debate. Although previous measurements suggested that a supermassive black hole Sagittarius A* plays a primary role, its radiation mechanism remains unclear, mainly due to limited angular resolution and sensitivity. The enhanced sensitivity in our novel approach is thus expected to provide new insights into the question. We here present the current status of the data analysis for the Galactic Center joint MAGIC and LST-1 observations

    Search for very high-energy gamma-ray emission from the microquasar Cygnus X-1 with the MAGIC telescopes

    Get PDF
    The microquasar Cygnus X-1 displays the two typical soft and hard X-ray states of a black hole transient. During the latter, Cygnus X-1 shows a one-sided relativistic radio-jet. Recent detection of the system in the high energy (HE; E greater than or similar to 60 MeV) gamma-ray range with FermiLAT associates this emission with the outflow. Former MAGIC observations revealed a hint of flaring activity in the very high-energy (VHE; E greater than or similar to 100 GeV) regime during this X-ray state. We analyse similar to 97 h of Cygnus X-1 data taken with the MAGIC telescopes between July 2007 and October 2014. To shed light on the correlation between hard X-ray and VHE gamma rays as previously suggested, we study each main X-ray state separately. We perform an orbital phase-folded analysis to look for variability in the VHE band. Additionally, to place this variability behaviour in a multiwavelength context, we compare our results with Fermi-LAT, AGILE, Swift-BAT, MAXI, RXTE-ASM, AMI and RATAN-600 data. We do not detect Cygnus X-1 in the VHE regime. We establish upper limits for each X-ray state, assuming a power-law distribution with photon index Gamma = 3.2. For steady emission in the hard and soft X-ray states, we set integral upper limits at 95 per cent confidence level for energies above 200 GeV at 2.6 x 10(-12) photons cm(-2) s(-1) and 1.0 x 10(-11) photons cm(-2) s(-1), respectively. We rule out steady VHE gamma-ray emission above this energy range, at the level of theMAGIC sensitivity, originating in the interaction between the relativistic jet and the surrounding medium, while the emission above this flux level produced inside the binary still remains a valid possibility
    corecore