32 research outputs found
The rice mitochondrial iron transporter is essential for plant growth
In plants, iron (Fe) is essential for mitochondrial electron transport, heme, and Fe-Sulphur (Fe-S) cluster synthesis; however, plant mitochondrial Fe transporters have not been identified. Here we show, identify and characterize the rice mitochondrial Fe transporter (MIT). Based on a transfer DNA library screen, we identified a rice line showing symptoms of Fe deficiency while accumulating high shoot levels of Fe. Homozygous knockout of MIT in this line resulted in a lethal phenotype. MIT localized to the mitochondria and complemented the growth of Δmrs3Δmrs4 yeast defective in mitochondrial Fe transport. The growth of MIT-knockdown (mit-2) plants was also significantly impaired despite abundant Fe accumulation. Further, the decrease in the activity of the mitochondrial and cytosolic Fe-S enzyme, aconitase, indicated that Fe-S cluster synthesis is affected in mit-2 plants. These results indicate that MIT is a mitochondrial Fe transporter essential for rice growth and development
Composite silicate films with gold nanoparticles for surface-enhanced Raman spectroscopy: synthesis using natural products
Porous polystyrene beads as carriers for self-emulsifying system containing loratadine
The aim of this study was to formulate a self-emulsifying system (SES) containing a lipophilic drug, loratadine, and to explore the potential of preformed porous polystyrene beads (PPB) to act as carriers for such SES. Isotropic SES was formulated, which comprised Captex 200 (63% wt/wt), Cremophore EL (16% wt/wt), Capmul MCM (16% wt/wt), and loratadine (5% wt/wt). SES was evaluated for droplet size, drug content, and in vitro drug release. SES was loaded into preformed and characterized PPB using solvent evaporation method. SES-loaded PPB were evaluated using scanning electron microscopy (SEM) for density, specific surface area (SBET), loading efficiency, drug content, and in vitro drug release. After SES loading, specific surface area reduced drastically, indicating filling of PPB micropores with SES. Loading efficiency was least for small size (SS) and comparable for medium size (MS) and large size (LS) PPB fractions. In vitro drug release was rapid in case of SS beads due to the presence of SES near to surface. LS fraction showed inadequate drug release owing to presence of deeper micropores that resisted outward diffusion of entrapped SES. Leaching of SES from micropores was the rate-limiting step for drug release. Geometrical features such as bead size and pore architecture of PPB were found to govern the loading efficiency and in vitro drug release from SES-loaded PPB
Effect of formulation variables on preparation and evaluation of gelled self-emulsifying drug delivery system (SEDDS) of ketoprofen
The purpose of this study was to formulate a gelled self-emulsifying drug delivery system (SEDDS) containing ketoprofen as an intermediate in the development of sustained release solid dosage form. Captex 200 (an oil), Tween 80 (a surfactant), and Capmul MCM (a cosurfactant) were used to formulate SEDDS. Silicon dioxide was used as a gelling agent, which may aid in solidification and retardation of drug release. Effect of concentrations of cosurfactant and gelling agent on emulsification process and in vitro drug diffusion was studied using 32 factorial design. Multiple regression analysis data and response surfaces obtained showed that liquid crystal phase viscosity increased significantly with increasing amount of silicon dioxide, which in turn caused an increase in average droplet size of resultant emulsion and slower drug diffusion. Drug release from the formulation increased with increasing amount of cosurfactant
Bioavailability assessment of ketoprofen incorporated in gelled self-emulsifying formulation: A technical note
Based on the results of the present study, it is apparent that the gelled SEF containing KPF did not significantly alter its bioavailability as compared with that of an immediate release solid dosage form when administered to human volunteers by the oral route
Preparation and evaluation of diltiazem hydrochloride-gelucire 43/01 floating granules prepared by melt granulation
The basic objective of this study was to explore the application of Gelucire 43/01 for the design of multi-unit floating systems of a highly water-soluble drug diltiazem HCl. Diltiazem HCl-Gelucire 43/01 granules were prepared by melt granulation technique. The granules were evaluated for in vitro and in vivo floating ability, surface topography, and in vitro drug release. Aging effect on storage was vvaluated using scanning electron microscopy, hot stage polarizing microscopy (HSPM), differential scanning calorimetry (DSC), and in vitro drug release. Granules were retained in stomach at least for 6 hours. Approximately 65% to 80% drug was released over 6 hours with initial fast release from the surface. Surface topography, HSPM, DSC study of the aged samples showed phase transformation of Gelucire. The phase transformation also caused significant increase in drug release. In conclusion, hydrophobic lipid, Gelucire 43/01, can be considered as an effective carrier for design of a multi-unit floating drug delivery system of highly water-soluble drugs such as diltiazem HCl
