573 research outputs found
Halfvortices in flat nanomagnets
We discuss a new type of topological defect in XY systems where the O(2)
symmetry is broken in the presence of a boundary. Of particular interest is the
appearance of such defects in nanomagnets with a planar geometry. They are
manifested as kinks of magnetization along the edge and can be viewed as
halfvortices with winding numbers \pm 1/2. We argue that halfvortices play a
role equally important to that of ordinary vortices in the statics and dynamics
of flat nanomagnets. Domain walls found in experiments and numerical
simulations are composite objects containing two or more of these elementary
defects. We also discuss a closely related system: the two-dimensional smectic
liquid crystal films with planar boundary condition.Comment: 7 pages, 8 figures, To appear as a chapter in Les Houches summer
school on Quantum Magnetis
Resource allocation within the National AIDS Control Program of Pakistan: a qualitative assessment of decision maker's opinions
BACKGROUND: Limited resources, whether public or private, demand prioritisation among competing needs to maximise productivity. With a substantial increase in the number of reported HIV cases, little work has been done to understand how resources have been distributed and what factors may have influenced allocation within the newly introduced Enhanced National AIDS Control Program of Pakistan. The objective of this study was to identify perceptions of decision makers about the process of resource allocation within Pakistan's Enhanced National AIDS Control Program. METHODS: A qualitative study was undertaken and in-depth interviews of decision makers at provincial and federal levels responsible to allocate resources within the program were conducted. RESULTS: HIV was not considered a priority issue by all study participants and external funding for the program was thought to have been accepted because of poor foreign currency reserves and donor agency influence rather than local need. Political influences from the federal government and donor agencies were thought to manipulate distribution of funds within the program. These influences were thought to occur despite the existence of a well-laid out procedure to determine allocation of public resources. Lack of collaboration among departments involved in decision making, a pervasive lack of technical expertise, paucity of information and an atmosphere of ad hoc decision making were thought to reduce resistance to external pressures. CONCLUSION: Development of a unified program vision through a consultative process and advocacy is necessary to understand goals to be achieved, to enhance program ownership and develop consensus about how money and effort should be directed. Enhancing public sector expertise in planning and budgeting is essential not just for the program, but also to reduce reliance on external agencies for technical support. Strengthening available databases for effective decision making is required to make financial allocations based on real, rather than perceived needs. With a large part of HIV program funding dedicated to public-private partnerships, it becomes imperative to develop public sector capacity to administer contracts, coordinate and monitor activities of the non-governmental sector
The sputum transcriptome better predicts COPD exacerbations after the withdrawal of inhaled corticosteroids than sputum eosinophils.
Introduction: Continuing inhaled corticosteroid (ICS) use does not benefit all patients with COPD, yet it is difficult to determine which patients may safely sustain ICS withdrawal. Although eosinophil levels can facilitate this decision, better biomarkers could improve personalised treatment decisions. Methods: We performed transcriptional profiling of sputum to explore the molecular biology and compared the predictive value of an unbiased gene signature versus sputum eosinophils for exacerbations after ICS withdrawal in COPD patients. RNA-sequencing data of induced sputum samples from 43 COPD patients were associated with the time to exacerbation after ICS withdrawal. Expression profiles of differentially expressed genes were summarised to create gene signatures. In addition, we built a Bayesian network model to determine coregulatory networks related to the onset of COPD exacerbations after ICS withdrawal. Results: In multivariate analyses, we identified a gene signature (LGALS12, ALOX15, CLC, IL1RL1, CD24, EMR4P) associated with the time to first exacerbation after ICS withdrawal. The addition of this gene signature to a multiple Cox regression model explained more variance of time to exacerbations compared to a model using sputum eosinophils. The gene signature correlated with sputum eosinophil as well as macrophage cell counts. The Bayesian network model identified three coregulatory gene networks as well as sex to be related to an early versus late/nonexacerbation phenotype. Conclusion: We identified a sputum gene expression signature that exhibited a higher predictive value for predicting COPD exacerbations after ICS withdrawal than sputum eosinophilia. Future studies should investigate the utility of this signature, which might enhance personalised ICS treatment in COPD patients
Exploration of the Equilibrium and Stability Properties of Spherical Tokamaks and Projection for MAST-U
In preparation for high fusion plasma performance operation of the newly operating spherical tokamak MAST-U, the
equilibrium and stability properties of plasmas in the MAST database, as well as projections for MAST-U, are explored. The disruption event characterization and forecasting (DECAF) code is utilized to map disruptions in MAST, particularly with regard to vertical displacement events. Loss of vertical stability control was not found to be common in MAST, providing reassurance for MAST-U operation. MAST equilibria were reconstructed with magnetic diagnostics, adding kinetic diagnostics, or finally also adding magnetic pitch angle data. The reconstructions work well for MAST and the procedures are set up for MAST-U, including determination of the plasma current in the first MAST-U discharges. A 3D wall model of MAST-U has been constructed in the VALEN code, indicating that significant toroidal currents may be induced in the conducting structure. Rotation measurements may also be included in the reconstructions, and a test with the FLOW code of a rotating MAST plasma indicates a modest shift of the pressure contours off of the magnetic flux surfaces may be expected.
Unstable resistive wall modes (RWMs) may constrain the performance of high pressure MAST-U plasmas. A machine learning (ML) assisted algorithm for stability calculation developed for the NSTX spherical tokamak has been applied to MAST plasmas. Improvements and expansion of the ML techniques continue, including semi-supervised learning techniques and a detection algorithm for unstable RWMs. Finally, projections of MAST-U plasma stability have been performed, indicating that a region of high pressure operational space exists in which the new passive stabilization plates act to stabilize ideal kink
modes and RWMs may be stabilized by kinetic effects or active control
Improving outcomes for people with COPD by developing networks of general practices: evaluation of a quality improvement project in east London
BACKGROUND: Structured care for people with chronic obstructive pulmonary disease (COPD) can improve outcomes. Delivering care in a deprived ethnically diverse area can prove challenging. AIMS: Evaluation of a system change to enhance COPD care delivery in a primary care setting between 2010 and 2013 using observational data. METHODS: All 36 practices in one inner London primary care trust were grouped geographically into eight networks of 4-5 practices, each supported by a network manager, clerical staff and an educational budget. A multidisciplinary group, including a respiratory specialist and the community respiratory team, developed a 'care package' for COPD management, with financial incentives based on network achievements of clinical targets and supported case management and education. Monthly electronic dashboards enabled networks to track and improve performance. RESULTS: The size of network COPD registers increased by 10% in the first year. Between 2010 and 2013 completed care plans increased from 53 to 86.5%, pulmonary rehabilitation referrals rose from 45 to 70% and rates of flu immunisation from 81 to 83%, exceeding London and England figures. Hospital admissions decreased in Tower Hamlets from a historic high base. CONCLUSIONS: Investment of financial, organisational and educational resource into general practice networks was associated with clinically important improvements in COPD care in socially deprived, ethnically diverse communities. Key behaviour change included the following: collaborative working between practices driven by high-quality information to support performance review; shared financial incentives; and engagement between primary and secondary care clinicians
Long-range transfer of electron-phonon coupling in oxide superlattices
The electron-phonon interaction is of central importance for the electrical
and thermal properties of solids, and its influence on superconductivity,
colossal magnetoresistance, and other many-body phenomena in
correlated-electron materials is currently the subject of intense research.
However, the non-local nature of the interactions between valence electrons and
lattice ions, often compounded by a plethora of vibrational modes, present
formidable challenges for attempts to experimentally control and theoretically
describe the physical properties of complex materials. Here we report a Raman
scattering study of the lattice dynamics in superlattices of the
high-temperature superconductor and the
colossal-magnetoresistance compound that suggests
a new approach to this problem. We find that a rotational mode of the MnO
octahedra in experiences pronounced
superconductivity-induced lineshape anomalies, which scale linearly with the
thickness of the layers over a remarkably long range of
several tens of nanometers. The transfer of the electron-phonon coupling
between superlattice layers can be understood as a consequence of long-range
Coulomb forces in conjunction with an orbital reconstruction at the interface.
The superlattice geometry thus provides new opportunities for controlled
modification of the electron-phonon interaction in complex materials.Comment: 13 pages, 4 figures. Revised version to be published in Nature
Material
- …