6 research outputs found

    Prothymosin alpha: a ubiquitous polypeptide with potential use in cancer diagnosis and therapy

    Get PDF
    The thymus is a central lymphoid organ with crucial role in generating T cells and maintaining homeostasis of the immune system. More than 30 peptides, initially referred to as “thymic hormones,” are produced by this gland. Although the majority of them have not been proven to be thymus-speciWc, thymic peptides comprise an eVective group of regulators, mediating important immune functions. Thymosin fraction Wve (TFV) was the Wrst thymic extract shown to stimulate lymphocyte proliferation and diVerentiation. Subsequent fractionation of TFV led to the isolation and characterization of a series of immunoactive peptides/polypeptides, members of the thymosin family. Extensive research on prothymosin (proT) and thymosin 1 (T1) showed that they are of clinical signiWcance and potential medical use. They may serve as molecular markers for cancer prognosis and/or as therapeutic agents for treating immunodeWciencies, autoimmune diseases and malignancies. Although the molecular mechanisms underlying their eVect are yet not fully elucidated proT and T1 could be considered as candidates for cancer immunotherapy. In this review, we will focus in principle on the eventual clinical utility of proT, both as a tumor biomarker and in triggering anticancer immune responses. Considering the experience acquired via the use of T1 to treat cancer patients, we will also discuss potential approaches for the future introduction of proT into the clinical setting

    Antiapoptotic function of RNA-binding protein HuR effected through prothymosin α

    No full text
    We report the antiapoptotic effect of RNA-binding protein HuR, a critical regulator of the post-transcriptional fate of target transcripts. Among the most prominent mRNAs complexing with HuR is that encoding prothymosin α (ProTα), an inhibitor of the apoptosome. In HeLa cells, treatment with the apoptotic stimulus ultraviolet light (UVC) triggered the mobilization of ProTα mRNA to the cytoplasm and onto heavier polysomes, where its association with HuR increased dramatically. Analysis of a chimeric ProTα mRNA directly implicated HuR in regulating ProTα production: ProTα translation and cytoplasmic concentration increased in HuR-overexpressing cells and declined in cells in which HuR levels were lowered by RNA interference. Importantly, the antiapoptotic influence engendered by HuR was vitally dependent on ProTα expression, since use of oligomers that blocked ProTα translation abrogated the protective effect of HuR. Together, our data support a regulatory scheme whereby HuR binds the ProTα mRNA, elevates its cytoplasmic abundance and translation, and thereby elicits an antiapoptotic program
    corecore