18 research outputs found
The Causal Cascade to Multiple Sclerosis: A Model for MS Pathogenesis
BACKGROUND: MS pathogenesis seems to involve both genetic susceptibility and environmental risk factors. Three sequential factors are implicated in the environmental risk. The first acts near birth, the second acts during childhood, and the third acts long thereafter. Two candidate factors (vitamin D deficiency and Epstein-Barr viral infection) seem well suited to the first two environmental events. METHODOLOGY/PRINCIPAL FINDINGS: A mathematical Model for MS pathogenesis is developed, incorporating these environmental and genetic factors into a causal scheme that can explain some of the recent changes in MS-epidemiology (e.g., increasing disease prevalence, a changing sex-ratio, and regional variations in monozygotic twin concordance rates). CONCLUSIONS/SIGNIFICANCE: This Model suggests that genetic susceptibility is overwhelmingly the most important determinant of MS pathogenesis. Indeed, over 99% of individuals seem genetically incapable of developing MS, regardless of what environmental exposures they experience. Nevertheless, the contribution of specific genes to MS-susceptibility seems only modest. Thus, despite HLA DRB1*1501 being the most consistently identified genetic marker of MS-susceptibility (being present in over 50% of northern MS patient populations), only about 1% of individuals with this allele are even genetically susceptible to getting MS. Moreover, because genetic susceptibility seems so similar throughout North America and Europe, environmental differences principally determine the regional variations in disease characteristics. Additionally, despite 75% of MS-patients being women, men are 60% more likely to be genetically-susceptible than women. Also, men develop MS at lower levels of environmental exposure than women. Nevertheless, women are more responsive to the recent changes in environmental-exposure (whatever these have been). This explains both the changing sex-ratio and the increasing disease prevalence (which has increased by a minimum of 32% in Canada over the past 35 years). As noted, environmental risk seems to result from three sequential components of environmental exposure. The potential importance of this Model for MS pathogenesis is that, if correct, a therapeutic strategy, designed to interrupt one or more of these sequential factors, has the potential to markedly reduce or eliminate disease prevalence in the future
T-cell recognition of an immuno-dominant myelin basic protein epitope in multiple sclerosis
Multiple sclerosis is thought to be an autoimmune disease of the central nervous system mediated by T cells specific for a myelin antigen. Myelin basic protein has been studied as a potential autoantigen in the disease because of its role as an encephalitogen in experimental autoimmune encephalomyelitis and post-viral encephalomyelitis and because of the presence in the blood of multiple sclerosis patients of in vivo-activated T cells reactive to myelin basic protein. Immune involvement in multiple sclerosis has been further suggested by the association with the major histocompatibility complex class II phenotype DR2, DQw1. To define the T-cell specificity toward myelin basic protein, 15,824 short-term T-cell lines were established from multiple sclerosis subjects, subjects with other neurological diseases, and normal controls. Here we report a higher frequency of T-cell lines reactive with a DR2-associated region of myelin basic protein between residues 84-102 in patients with multiple sclerosis compared with controls. A second region, identified between residues 143-168, was recognized equally in multiple sclerosis patients and controls and was associated with the DRw11 phenotype. These DR2 and DRw11 associations were also observed among T-cell lines generated from family members of a multiple sclerosis patient. The immunodominant 84-102 peptide from myelin basic protein was both DR2- and DQw1-restricted among different T-cell lines. These results raise the possibility that this immunodominant region may be encephalitogenic in some DR2+ individuals