52 research outputs found

    One Monopole with k Singularities

    Full text link
    We present all charge one monopole solutions of the Bogomolny equation with k prescribed Dirac singularities for the gauge groups U(2), SO(3), or SU(2). We analyze these solutions comparing them to the previously known expressions for the cases of one or two singularities.Comment: 12 pages, LaTe

    Heterotic Action in SUGRA-SYM Background

    Full text link
    We consider the generalization of the heterotic action considered by Cherkis and Schwarz where the chiral bosons are introduced in a manifestly covariant way using an auxiliary field. In particular, we construct the kappa-symmetric heterotic action in ten-dimensional supergravity background coupled to super Yang-Mills theory and prove its kappa-symmetry. The usual Bianchi identity of Type I supergravity with super Yang-Mills dH_3= -\tr F\wedge F is crucially used. For technical reason, the Yang-Mills field is restricted to be abelian.Comment: 12 pages, no figures, added comments in the acknowledgmen

    Quantized Nambu-Poisson Manifolds in a 3-Lie Algebra Reduced Model

    Full text link
    We consider dimensional reduction of the Bagger-Lambert-Gustavsson theory to a zero-dimensional 3-Lie algebra model and construct various stable solutions corresponding to quantized Nambu-Poisson manifolds. A recently proposed Higgs mechanism reduces this model to the IKKT matrix model. We find that in the strong coupling limit, our solutions correspond to ordinary noncommutative spaces arising as stable solutions in the IKKT model with D-brane backgrounds. In particular, this happens for S^3, R^3 and five-dimensional Neveu-Schwarz Hpp-waves. We expand our model around these backgrounds and find effective noncommutative field theories with complicated interactions involving higher-derivative terms. We also describe the relation of our reduced model to a cubic supermatrix model based on an osp(1|32) supersymmetry algebra.Comment: 22 page

    D-brane Charges in Gravitational Duals of 2+1 Dimensional Gauge Theories and Duality Cascades

    Full text link
    We perform a systematic analysis of the D-brane charges associated with string theory realizations of d=3 gauge theories, focusing on the examples of the N=4 supersymmetric U(N)xU(N+M) Yang-Mills theory and the N=3 supersymmetric U(N)xU(N+M) Yang-Mills-Chern-Simons theory. We use both the brane construction of these theories and their dual string theory backgrounds in the supergravity approximation. In the N=4 case we generalize the previously known gravitational duals to arbitrary values of the gauge couplings, and present a precise mapping between the gravity and field theory parameters. In the N=3 case, which (for some values of N and M) flows to an N=6 supersymmetric Chern-Simons-matter theory in the IR, we argue that the careful analysis of the charges leads to a shift in the value of the B-field in the IR solution by 1/2, in units where its periodicity is one, compared to previous claims. We also suggest that the N=3 theories may exhibit, for some values of N and M, duality cascades similar to those of the Klebanov-Strassler theory.Comment: 47 pages, 9 figures; minor changes, references adde

    Gauge and Supersymmetric Invariance of a Boundary Bagger-Lambert-Gustavsson Theory

    Full text link
    In this paper we will discuss the effect of a having a boundary on the supersymmetric invariance and gauge invariance of the Bagger-Lambert-Gustavsson (BLG) Theory. We will show that even though the supersymmetry and gauge invariance of the original BLG theory is broken due to the presence of a boundary, it restored by the addition of suitable boundary terms. In fact, to achieve the gauge invariance of this theory, we will have to introduce new boundary degrees of freedom. The boundary theory obeyed by these new boundary degrees of freedom will be shown to be a generalization of the gauged Wess-Zumino-Witten model, with the generators of the Lie algebra replaced by the generators of the Lie 3-algebra. The gauge and supersymmetry variations of the boundary theory will exactly cancel the boundary terms generated by the gauge and supersymmetric variations of the bulk theory.Comment: 15 pages, 0 figures, accepted for publication in JHE

    General Argyres-Douglas Theory

    Full text link
    We construct a large class of Argyres-Douglas type theories by compactifying six dimensional (2,0) A_N theory on a Riemann surface with irregular singularities. We give a complete classification for the choices of Riemann surface and the singularities. The Seiberg-Witten curve and scaling dimensions of the operator spectrum are worked out. Three dimensional mirror theory and the central charges a and c are also calculated for some subsets, etc. Our results greatly enlarge the landscape of N=2 superconformal field theory and in fact also include previous theories constructed using regular singularity on the sphere.Comment: 55 pages, 20 figures, minor revision and typos correcte

    Branes and fluxes in special holonomy manifolds and cascading field theories

    Full text link
    We conduct a study of holographic RG flows whose UV is a theory in 2+1 dimensions decoupled from gravity, and the IR is the N=6,8 superconformal fixed point of ABJM. The solutions we consider are constructed by warping the M-theory background whose eight spatial dimensions are manifolds of special holonomies sp(1) times sp(1) and spin(7). Our main example for the spin(7) holonomy manifold is the A8 geometry originally constructed by Cvetic, Gibbons, Lu, and Pope. On the gravity side, our constructions generalize the earlier construction of RG flow where the UV was N=3 Yang-Mills-Chern-Simons matter system and are simpler in a number of ways. Through careful consideration of Page, Maxwell, and brane charges, we identify the discrete and continuous parameters characterizing each system. We then determine the range of the discrete data, corresponding to the flux/rank for which the supersymmetry is unbroken, and estimate the dynamical supersymmetry breaking scale as a function of these data. We then point out the similarity between the physics of supersymmetry breaking between our system and the system considered by Maldacena and Nastase. We also describe the condition for unbroken supersymmetry on class of construction based on a different class of spin(7) manifolds known as B8 spaces whose IR is different from that of ABJM and exhibit some interesting features.Comment: 51 pages, 12 figures. Update in quantization of G4 on B8 in equations (5.12) and (5.13

    Line operators on S^1xR^3 and quantization of the Hitchin moduli space

    Full text link
    We perform an exact localization calculation for the expectation values of Wilson-'t Hooft line operators in N=2 gauge theories on S^1xR^3. The expectation values are naturally expressed in terms of the complexified Fenchel-Nielsen coordinates, and form a quantum mechanically deformed algebra of functions on the associated Hitchin moduli space by Moyal multiplication. We propose that these expectation values are the Weyl transform of the Verlinde operators, which act on Liouville/Toda conformal blocks as difference operators. We demonstrate our proposal explicitly in SU(N) examples.Comment: 58 pages; v.2 minor corrections, references added; v.3 corrections corresponding to JHEP erratu

    The BPS Spectrum Generator In 2d-4d Systems

    Full text link
    We apply the techniques provided by the recent works Gaiotto, Moore and Neitzke, to derive the most general spectrum generating functions for coupled 2d-4d A1A_1 theories of class S{\cal S}, in presence of surface and line defects. As an application of the result, some well-known BPS spectra are reproduced. Our results apply to a large class of coupled 2d-4d systems, the corresponding spectrum generating functions can be easily derived from our general expressions.Comment: 38 pages; v2: references added; v3: references added, added introductory material in sections 1, 2.1, 2.2, 2.
    corecore