7 research outputs found

    Tetrahedral Finite-Volume Solutions to the Navier-Stokes Equations on Complex Configurations

    No full text
    A review of the algorithmic features and capabilities of the unstructured-grid flow solver USM3Dns is presented. This code, along with the tetrahedral grid generator, VGRIDns, is being extensively used throughout the U.S. for solving the Euler and Navier-Stokes equations on complex aerodynamic problems. Spatial discretization is accomplished by a tetrahedral cell-centered finite-volume formulation using Roe's upwind flux difference splitting. The fluxes are limited by either a Superbee or MinMod limiter. Solution reconstruction within the tetrahedral cells is accomplished with a simple, but novel, multidimensional analytical formula. Time is advanced by an implicit backward-Euler time-stepping scheme. Flow turbulence effects are modeled by the Spalart-Allmaras one-equation model, which is coupled with a wall function to reduce the number of cells in the near-wall region of the boundary layer. The issues of accuracy and robustness of USM3Dns Navier-Stokes capabilities are addressed for ..

    Domain Decomposition By the Advancing-Partition Method for Parallel Unstructured Grid Generation

    No full text

    Deformation of Unstructured Viscous Grids

    Get PDF
    A mesh deformation algorithm for unstructured grids is presented. It is designed for high Reynolds number flow problems. Such grids are employed in aerodynamic and aeroelastic studies of wings or complete aircraft configurations in flows where the viscous effects are important. Given a surface deformation, the method efficiently recalculates new locations of high aspect ratio cells that make up the viscous layers of the grid and then deforms the inviscid part of the grid using an established method based on a torsional spring analogy technique. Results are presented for monitoring the deterioration of the quality of the grid during subsequent deformation steps for aeroelastic studies as well as to ensure the time efficiency of the method. Results for grid deformation of a 1.4 million cell AGARD 445.6 wing grid designed for flow at high Reynolds numbers due to typical deformations are also presented. Finally, a discussion of the parallelization performance and comparison of the running time of the mesh deformation algorithm to that used by the flow solver is made

    CFD Computations for a Generic High-Lift Configuration Using TetrUSS

    No full text

    Contributions of TetrUSS to Project Orion (Invited)

    No full text
    corecore