251 research outputs found

    Behavior of decabromodiphenyl ether (BDE-209) in the soil-plant system: uptake, translocation, and metabolism in plants and dissipation in soil

    Get PDF
    Deca-bromodiphenyl ether (BDE-209) is the major component of the commercial deca-BDE flame retardant. There is increasing concern over BDE-209 due to its increasing occurrence in the environment and in humans. In this study the behavior of BDE-209 in the soil-plant system was investigated. Accumulation of BDE-209 was observed in the roots and shoots of all the six plant species examined, namely ryegrass, alfalfa, pumpkin, summer squash, maize, and radish. Root uptake of BDE-209 was positively correlated with root lipid content (P < 0.001, R(2) = 0.81). The translocation factor (TF, C(shoot)/C(root)) of BDE-209 was inversely related to its concentration in roots. Nineteen lower brominated (di- to nor a-) PBDEs were detected in the soil and plant samples and five hydroxylated congeners were detected in the plant samples, indicating debromination and hydroxylation of BDE-209 in the soil-plant system. Evidence of a relatively higher proportion of penta- through di-BDE congeners in plant tissues than in the soil indicates that there is further debromination of PBDEs within plants or low brominated PBDEs are more! readily taken up by plants. A significant negative correlation between the residual BDE-209 concentration in soil and the soil microbial biomass measured as the total phospholipid fatty, acids (PLFAs) (P < 0.05, R(2) = 0.74) suggests that microbial metabolism and degradation contribute to BDE-209 dissipation in soil. These results provide important information about the behavior of BDE-209 in the soil-plant system

    Influence of Glomus etunicatum/Zea mays mycorrhiza on atrazine degradation, soil phosphatase and dehydrogenase activities, and soil microbial community structure

    Get PDF
    The effects of an arbuscular mycorrhizal (AM) fungus (Glomus etunicatum) on atrazine dissipation, soil phosphatase and dehydrogenase activities and soil microbial community structure were investigated. A compartmented side-arm ('cross-pot') system was used for plant cultivation. Maize was cultivated in the main root compartment and atrazine-contaminated soil was added to the side-arms and between them 650 or 37 mu m nylon mesh was inserted which allowed mycorrhizal roots or extraradical mycelium to access atrazine in soil in the side-arms. Mycorrhizal roots and extraradical mycelium increased the degradation of atrazine in soil and modified the soil enzyme activities and total soil phospholipid fatty acids (PLFAs). Atrazine declined more and there was greater stimulation of phosphatase and dehydrogenase activities and total PLFAs in soil in the extraradical mycelium compartment than in the mycorrhizal root compartment when the atrazine addition rate to soil was 5.0 mg kg(-1). Mycelium had a more important influence than mycorrhizal roots on atrazine degradation. However, when the atrazine addition rate was 50.0 mg kg(-1). atrazine declined more in the mycorrhizal root compartment than in the extraradical mycelium compartment, perhaps due to inhibition of bacterial activity and higher toxicity to AM mycelium by atrazine at higher concentration. Soil PLFA profiles indicated that the AM fungus exerted a pronounced effect on soil microbial community structure. (C) 2009 Elsevier Ltd. All rights reserved

    Partitioning of phenanthrene by root cell walls and cell wall fractions of wheat (Triticum aestivum L.)

    Get PDF
    Plant cells have been reported to play an important role in the uptake of organic contaminants. This study was undertaken to provide an insight into the role of the root cell walls and their subfractions on sorption of phenanthrene to roots of wheat (Triticum aestivum L.). Root cell walls were isolated and further sequentially fractioned by removing pectin, hemicellulose one, and hemicellulose two. They were characterized by elemental analysis, Fourier transform infrared spectroscopy, and solid-state (13)C NMR. Root cell walls had a greater proportion of aromatic carbon and exhibited a lower polarity than the bulk roots. There was a stepwise increase in aromatic carbon content and a decrease in polarity following the sequential fractionation. The sorption affinity of phenanthrene increased gradually following the sequential extraction of root cells. A significant positive correlation between the sorption affinity K(OC) values and the aromatic carbon contents (r(2) = 0.896, p < 0.01) and a negative correlation between the sorption affinity K(OC) values and polarity ((O + N)/C) of root cell fractions (r(2) = 0.920, p < 0.01) were obtained. Improved modeling was achieved for phenanthrene sorption by involving the contribution of root cell walls as a source of root carbohydrates instead of using root lipids alone, which further confirms the significant contribution of root cell walls to phenanthrene sorption on wheat roots. The results provide evidence for the importance of the root cell walls in the partitioning of phenanthrene by plant roots

    Face Detection with Effective Feature Extraction

    Full text link
    There is an abundant literature on face detection due to its important role in many vision applications. Since Viola and Jones proposed the first real-time AdaBoost based face detector, Haar-like features have been adopted as the method of choice for frontal face detection. In this work, we show that simple features other than Haar-like features can also be applied for training an effective face detector. Since, single feature is not discriminative enough to separate faces from difficult non-faces, we further improve the generalization performance of our simple features by introducing feature co-occurrences. We demonstrate that our proposed features yield a performance improvement compared to Haar-like features. In addition, our findings indicate that features play a crucial role in the ability of the system to generalize.Comment: 7 pages. Conference version published in Asian Conf. Comp. Vision 201

    A variational approach to strongly damped wave equations

    Full text link
    We discuss a Hilbert space method that allows to prove analytical well-posedness of a class of linear strongly damped wave equations. The main technical tool is a perturbation lemma for sesquilinear forms, which seems to be new. In most common linear cases we can furthermore apply a recent result due to Crouzeix--Haase, thus extending several known results and obtaining optimal analyticity angle.Comment: This is an extended version of an article appeared in \emph{Functional Analysis and Evolution Equations -- The G\"unter Lumer Volume}, edited by H. Amann et al., Birkh\"auser, Basel, 2008. In the latest submission to arXiv only some typos have been fixe

    Spin Analysis of Supersymmetric Particles

    Full text link
    The spin of supersymmetric particles can be determined at e+ee^+e^- colliders unambiguously. This is demonstrated for a characteristic set of non-colored supersymmetric particles -- smuons, selectrons, and charginos/neutralinos. The analysis is based on the threshold behavior of the excitation curves for pair production in e+ee^+e^- collisions, the angular distribution in the production process and decay angular distributions. In the first step we present the observables in the helicity formalism for the supersymmetric particles. Subsequently we confront the results with corresponding analyses of Kaluza-Klein particles in theories of universal extra space dimensions which behave distinctly different from supersymmetric theories. It is shown in the third step that a set of observables can be designed which signal the spin of supersymmetric particles unambiguously without any model assumptions. Finally in the fourth step it is demonstrated that the determination of the spin of supersymmetric particles can be performed experimentally in practice at an e+ee^+e^- collider.Comment: 39 pages, 14 figure

    The ARGO-YBJ Experiment Progresses and Future Extension

    Full text link
    Gamma ray source detection above 30TeV is an encouraging approach for finding galactic cosmic ray origins. All sky survey for gamma ray sources using wide field of view detector is essential for population accumulation for various types of sources above 100GeV. To target the goals, the ARGO-YBJ experiment has been established. Significant progresses have been made in the experiment. A large air shower detector array in an area of 1km2 is proposed to boost the sensitivity. Hybrid detection with multi-techniques will allow a good discrimination between different types of primary particles, including photons and protons, thus enable an energy spectrum measurement for individual specie. Fluorescence light detector array will extend the spectrum measurement above 100PeV where the second knee is located. An energy scale determined by balloon experiments at 10TeV will be propagated to ultra high energy cosmic ray experiments
    corecore