167 research outputs found

    Turbo-Detected Unequal Protection MPEG-4 Audio Transceiver Using Convolutional Codes, Trellis Coded Modulation and Space-Time Trellis Coding

    No full text
    A jointly optimised turbo transceiver capable of providing unequal error protection is proposed for employment in an MPEG-4 aided audio transceiver. The transceiver advocated consists of Space-Time Trellis Coding (STTC), Trellis Coded Modulation (TCM) and two different-rate Non-Systematic Convolutional codes (NSCs) used for unequal error protection. A benchmarker scheme combining STTC and a single-class protection NSC is used for comparison with the proposed scheme. The audio performance of the both schemes is evaluated when communicating over uncorrelated Rayleigh fading channels. It was found that the proposed unequal protection turbo-transceiver scheme requires about two dBs lower transmit power than the single-class turbo benchmarker scheme in the context of the MPEG-4 audio transceiver, when aiming for an effective throughput of 2 bits/symbol, while exhibiting a similar decoding complexity

    Three-Dimensional EXIT Chart Analysis of Iterative Detection Aided Coded Modulation Schemes

    No full text
    The iterative convergence of iteratively detected coded modulation schemes having different block lengths, decoding complexity and an unequal error protection capability is studied, when communicating over AWGNchannels using 8PSK modulation. More specifically, the coded modulation schemes investigated include Multilevel Coding (MLC), Trellis Coded Modulation (TCM), Turbo Trellis Coded Modulation (TTCM), Bit-Interleaved Coded Modulation (BICM) as well as Bit-Interleaved Coded Modulation employing Iterative Decoding (BICM-ID). A novel three dimensional EXIT chart was introduced for studying the iterative convergence behaviour of the Multistage Decoding (MSD) scheme used in MLC

    Slow subcarrier-hopped Space Division Multiple Access OFDM systems

    No full text
    Recently Space Division Multiple Access (SDMA) assisted Multi-Input-Multi-Output (MIMO) OFDM systems invoking Multi-User Detection (MUD) techniques have attracted substantial research interests, which are capable of exploiting both transmitter multiplexing gain and receiver diversity gain. Furthermore, the classic Frequency-Hopping (FH) technique can be effectively amalgamated with SDMA-OFDM systems, resulting in Frequency-Hopped (FH) SDMA-OFDM. In this paper we devise a Turbo Trellis Coded Modulation (TTCM) assisted subcarrier-based FH/SDMA-OFDM scheme, which may be able to fully exploit the attainable frequency diversity, while exhibiting a high Multi-User-Interference (MUI) resistance. In the high-throughput scenario investigated, the proposed Uniform Slow-SubCarrier-Hopped (USSCH) SDMA-OFDM system was capable of achieving 6dB Eb=N0 gain at the BER of 10¡4 over the conventional SDMA-OFDM system, while maintaining a similar complexity

    Turbo-detected unequal protection audio and speech transceivers using serially concatenated convolutional codes, trellis coded modulation and space-time trellis coding

    No full text
    The MPEG-4 TwinVQ audio codec and the AMR-WB speech codec are investigated in the context of a jointly optimised turbo transceiver capable of providing unequal error protection. The transceiver advocated consists of serially concatenated Space-Time Trellis Coding (STTC), Trellis Coded Modulation (TCM) and two different-rate Non-Systematic Convolutional codes (NSCs) used for unequal error protection. A benchmarker scheme combining STTC and a single-class protection NSC is used for comparison with the proposed scheme. The audio and speech performance of both schemes is evaluated, when communicating over uncorrelated Rayleigh fading channels. An Eb/N0E_b/N_0 value of about 2.5 (3.5)~dB is required for near-unimpaired audio (speech) transmission, which is about 3.07 (4.2)~dB from the capacity of the system

    M-ary Coded Mouldation Assisted Genetic Algorithm Based Multiuser Detection for CDMA Systems

    No full text
    In this contribution we propose a novel M-ary Coded Modulation assisted Genetic Algorithm based Multiuser Detection (CM-GA-MUD) scheme for synchronous CDMA systems. The performance of the proposed scheme was investigated using Quadrature-Phase-Shift-Keying (QPSK), 8-level PSK (8PSK) and 16-level Quadrature Amplitude Modulation (16QAM) when communicating over AWGN and narrowband Rayleigh fading channels. When compared with the optimum MUD scheme, the GAMUD subsystem is capable of reducing the computational complexity significantly. On the other hand, the CM subsystem is capable of obtaining considerable coding gains despite being fed with sub-optimal information provided by the GA-MUD output

    Full-Rate, Full-Diversity Adaptive Space Time Block Coding for Transmission over Rayleigh Fading Channels

    No full text
    A full-rate, full-diversity Adaptive Space Time Block Coding (ASTBC) scheme based on Singular Value Decomposition (SVD) is proposed for transmission over Rayleigh fading channels. The ASTBC-SVD scheme advocated is capable of providing both full-rate and full-diversity for any number of transmit antennas, Nt, provided that the number of receive antennas, Nr, equals to Nt. Furthermore, the ASTBC-SVD scheme may achieve an additional coding gain due to its higher product distance with the aid of the block code employed. In conjunction with SVD, the “water-filling” approach can be employed for adaptively distributing the transmitted power to the various antennas transmit according to the channel conditions, in order to further enhance the attainable performance. Since a codeword constituted by Nt symbols is transmitted in a single time slot by mapping the Nt symbols to the Nt transmit antennas in the spatial domain, the attainable performance of the ASTBC-SVD scheme does not degrade, when the channel impulse response values vary from one time slot to the next. Hence, the proposed ASTBC-SVD scheme is attractive in the context of both uncorrelated and correlated Rayleigh fading channels. The performance of the proposed scheme was evaluated, when communicating over uncorrelated Rayleigh fading channels. Explicitly, an Eb/N0 gain of 2.5 dB was achieved by the proposed ASTBC-SVD scheme against Alamouti’s scheme [1], when employing Nt = Nr = 2 in conjunction with 8PSK

    Joint-Detection and Interference Cancellation Based Burst-by-Burst Adaptive CDMA Schemes

    No full text
    Spread adaptive quadrature amplitude modulated (AQAM) code-division multiple access (CDMA) is proposed as a powerful means of exploiting the time-variant channel capacity fluctuations of wireless channels. It is studied in comparison to variable spreading factor (VSF)-based techniques. These adaptive-rate transmission methods are compared in the context of joint detection and interference cancellation assisted adaptive CDMA (ACDMA) systems. More explicitly, we exploit the time-variant channel quality of mobile channels by switching either the modulation mode (AQAM) or the spreading factor (VSF) on a burst-by-burst basis. The most appropriate modulation mode or spreading factor is chosen based on the instantaneous channel quality estimated. The chosen modem mode or spreading factor is communicated to the remote communicator either through explicit signalling or extracted at the receiver using blind detection techniques. The multiuser joint detector (JD) and the successive interference cancellation (SIC) receiver are compared in the context of these adaptive schemes, with the conclusion that the JD outperformed the SIC receiver in the ACDMA schemes at the cost of increased complexity. Finally, the performance of the uncoded AQAM JD-CDMA scheme is also compared to that of adaptive trellis coded modulation (TCM) assisted AQAM JD-CDMA, which allows us to incorporate adaptive channel coding without any bandwidth expansion.We also show that in the particular scenario studied, adaptiveTCM outperformed adaptive turbo TCM since the system was designed for maintaining a low turbo-interleaver delay. Index Terms—Burst-by-burst adaptive code-division multiple access (CDMA), joint detection CDMA, parallel interference cancellation (PIC), successive interference cancellation (SIC), successive and parallel interference cancellation

    Iterative Decoding and Soft Interference Cancellation in Fast Frequency Hopping Multiuser System Using Clipped Combining

    Get PDF
    Iterative decoding (ID) aided fast frequency hopping (FFH), M-ary frequency shift keying (MFSK) using clipped combining in multiple access (MA) channels is investigated. All users’ data are convolutionally encoded and the encoded bits are interleaved and converted to M-ary symbols, which are transmitted using FFH-MFSK modulation. The soft metrics to be passed from the demodulator to the decoder are derived assuming a Rayleigh fading channel. We also propose a novel multiuser detection (MUD) scheme which employs joint soft decoding as well as successive interference cancellation (SIC), the receiver exploiting the soft information fed back by the decoder to the demodulator in order to cancel the interference imposed by reliable symbols. Our simulation results show that the proposed scheme is capable of combatting multiuser interference and outperforms the conventional ID by about 3dB

    Iterative Near-Maximum-Likelihood Detection in Rank-Deficient Downlink SDMA Systems

    No full text
    Abstract—In this paper, a precoded and iteratively detected downlink multiuser system is proposed, which is capable of operating in rankdeficient scenarios, when the number of transmitters exceeds the number of receivers. The literature of uplink space division multiple access (SDMA) systems is rich, but at the time of writing there is a paucity of information on the employment of SDMA techniques in the downlink. Hence, we propose a novel precoded downlink SDMA (DL-SDMA) multiuser communication system, which invokes a low-complexity nearmaximum-likelihood sphere decoder and is particularly suitable for the aforementioned rank-deficient scenario. Powerful iterative decoding is carried out by exchanging extrinsic information between the precoder’s decoder and the outer channel decoder. Furthermore, we demonstrate with the aid of extrinsic information transfer charts that our proposed precoded DL-SDMA system has a better convergence behavior than its nonprecoded DL-SDMA counterpart. Quantitatively, the proposed system having a normalized system load of Ls = 1.333, i.e., 1.333 times higher effective throughput facilitated by having 1.333 times more DL-SDMA transmitters than receivers, exhibits a “turbo cliff” at an Eb/N0 of 5 dB and hence results in an infinitesimally low bit error rate (BER). By contrast, at Eb/N0 = 5 dB, the equivalent system dispensing with precoding exhibits a BER in excess of 10%. Index Terms—Iterative decoding, maximum likelihood detection, space division multiple access (SDMA) downlink, sphere decoding

    Equivalent-Capacity-Based Design of Space-Time Block-Coded Sphere-Packing-Aided Multilevel Coding

    No full text
    A multilevel coding (MLC) scheme invoking sphere packing (SP) modulation combined with space time block coding (STBC) is designed. The coding rates of each of the MLC component codes are determined using the so-called equivalent capacity based constituent-code rate-calculation procedure invoking a 4-dimensional (4D) sphere packing bit-to-symbol mapping scheme. Four different-rate Low-Density Parity Check (LDPC) constituent-codes are used by the MLC scheme. The performance of the resultant equivalent capacity based design is characterized using simulation results. Our results demonstrate an approximately 3.5dB gain over an identical scheme dispensing with SP modulation. Furthermore although a similar performance gain is attained by both the proposed MLC scheme and its benchmarker, which uses a single-class LDPC code, the MLC scheme is preferred, since it benefits from the new classic philosophy of using low-memory, low-complexity component codes as well as providing an unequal error protection capability
    corecore