1,585 research outputs found

    4f spin density in the reentrant ferromagnet SmMn2Ge2

    Full text link
    The spin contribution to the magnetic moment in SmMn2Ge2 has been measured by magnetic Compton scattering in both the low and high temperature ferromagnetic phases. At low temperature, the Sm site is shown to possess a large 4f spin moment of 3.4 +/- 0.1 Bohr magnetons, aligned antiparallel to the total magnetic moment. At high temperature, the data show conclusively that ordered magnetic moments are present on the samarium site.Comment: 5 pages, 2 figures, transferred from PRL to PRB (Rapid Comm.

    Critical-point scaling function for the specific heat of a Ginzburg-Landau superconductor

    Full text link
    If the zero-field transition in high temperature superconductors such as YBa_2Cu_3O_7-\delta is a critical point in the universality class of the 3-dimensional XY model, then the general theory of critical phenomena predicts the existence of a critical region in which thermodynamic functions have a characteristic scaling form. We report the first attempt to calculate the universal scaling function associated with the specific heat, for which experimental data have become available in recent years. Scaling behaviour is extracted from a renormalization-group analysis, and the 1/N expansion is adopted as a means of approximation. The estimated scaling function is qualitatively similar to that observed experimentally, and also to the lowest-Landau-level scaling function used by some authors to provide an alternative interpretation of the same data. Unfortunately, the 1/N expansion is not sufficiently reliable at small values of N for a quantitative fit to be feasible.Comment: 20 pages; 4 figure

    Compound effect of EHD and surface roughness in pool boiling and CHF with R-123

    Get PDF
    This article is a post-print version of the fianl published article which may be accessed at the link below.Saturated pool boiling of R-123 at 1 bar, including the critical heat flux (CHF), was enhanced by modifying the surface characteristics and applying a high intensity electrostatic field, the latter termed electrohydrodynamic (and abbreviated EHD) enhancement. The heat flux was varied from very low values in the natural convection regime up to CHF. Experiments were performed with increasing and decreasing heat flux to study boiling hysteresis without and with EHD. Boiling occurred on the sand blasted surface of a cylindrical copper block with embedded electrical heating elements, with standardized surface parameter Pa = 3.5 ÎŒm. The electric field was generated by a potential of 5 kV to 25 kV, applied through a 40 mm diameter circular electrode of ss-304 wire mesh, aperture size 5.1 mm, located at distances of 5 - 60 mm from the surface, with most of the data obtained for 20 mm. The data for the rough surface were compared with earlier data for a smooth surface and indicated a significant increase in the heat transfer rates. EHD produced a further increase in the heat transfer rates, particularly at low heat flux values and near the CHF. Boiling hysteresis was reduced progressively by EHD and eliminated at high field strength.This work was supported by Government of Pakistan under a scholarship programme

    Organizational networks in road safety: Case studies of U.S. Vision Zero cities

    Get PDF
    Objective: Each year, more than 30,000 deaths occur on U.S. roads. Recognizing the magnitude and persistence of this public health problem, a number of U.S. cities have adopted a relatively new approach to prevention, termed Vision Zero (VZ). VZ has been adopted by more than 30 U.S. cities and calls for creating a transportation system that ensures that no road traffic crash results in death or serious injury. A core component of VZ is strong multidisciplinary and multisector stakeholder engagement, and cities adopting VZ often establish a VZ coalition to foster stakeholder collaboration. However, there is little information on the structure, development, and functioning of coalitions working to achieve VZ and on tools available to study and evaluate such coalition functioning. We sought to describe the characteristics of prominent U.S. VZ city coalitions and context surrounding VZ uptake and advancement in these cities. Moreover, we demonstrate use of network analysis as one tool for exploring the structure of interorganizational relationships in coalitions. Methods: We conducted case studies of 4 prominent U.S. VZ city coalitions in 2017–2018. We summarized coalition members’ characteristics and responses to questions about their cities’ VZ adoption, planning, and implementation. We asked each coalition member to provide information on their contact frequency, perceived productivity, and resource sharing with every other coalition member in their city and used network analysis techniques in 2 cities to understand the structures and relationships in coalitions. Results: Findings indicated that government agencies generally constituted the majority of coalition members and often played central roles in terms of coalition network contact, productivity, and resource flow. Other emerging similarities regarding coalition establishment and VZ implementation included the need for political support, the importance of formal plan development, and increased collaboration and cooperation among partners. Conclusions: Organizational network analyses, enriched with coalition member interviews, can elucidate key aspects of coalition creation, attributes, and relationship structure. The case studies of leading VZ coalition networks presented here highlight the use of these tools. Ultimately, understanding associations between VZ network structures and attributes and road safety outcomes could help inform effective coalition adoption, implementation, and maintenance to optimize safety outcomes

    The Layer 0 Inner Silicon Detector of the D0 Experiment

    Full text link
    This paper describes the design, fabrication, installation and performance of the new inner layer called Layer 0 (L0) that was inserted in the existing Run IIa Silicon Micro-Strip Tracker (SMT) of the D0 experiment at the Fermilab Tevatron collider. L0 provides tracking information from two layers of sensors, which are mounted with center lines at a radial distance of 16.1 mm and 17.6 mm respectively from the beam axis. The sensors and readout electronics are mounted on a specially designed and fabricated carbon fiber structure that includes cooling for sensor and readout electronics. The structure has a thin polyimide circuit bonded to it so that the circuit couples electrically to the carbon fiber allowing the support structure to be used both for detector grounding and a low impedance connection between the remotely mounted hybrids and the sensors.Comment: 28 pages, 9 figure

    Weight stigma in Australia: a public health call to action

    Get PDF
    People living with obesity experience weight stigma in most social settings. This has a negative impact on their health and quality of life. A primary contributor to weight stigma is the misconception that obesity is caused by factors solely within an individual’s control. However, this disregards the complex and multifaceted nature of obesity. Weight stigma is perpetuated by the media, healthcare practitioners and researchers, and even public health campaigns and policies designed to help people living with obesity. This perspective article is a public health call to action to address weight stigma in Australia. We provide key recommendations for public health researchers, practitioners, and policy makers

    Airborne observations of arctic-boreal water surface elevations from AirSWOT Ka-Band InSAR and LVIS LiDAR

    Get PDF
    AirSWOT is an experimental airborne Ka-band radar interferometer developed by NASA-JPL as a validation instrument for the forthcoming NASA Surface Water and Ocean Topography (SWOT) satellite mission. In 2017, AirSWOT was deployed as part of the NASA Arctic Boreal Vulnerability Experiment (ABoVE) to map surface water elevations across Alaska and western Canada. The result is the most extensive known collection of near-nadir airborne Ka-band interferometric synthetic aperture radar (InSAR) data and derivative high-resolution (3.6 m pixel) digital elevation models to produce water surface elevation (WSE) maps. This research provides a synoptic assessment of the 2017 AirSWOT ABoVE dataset to quantify regional WSE errors relative to coincident in situ field surveys and LiDAR data acquired from the NASA Land, Vegetation, and Ice Sensor (LVIS) airborne platform. Results show that AirSWOT WSE data can penetrate cloud cover and have nearly twice the swath-width of LVIS as flown for ABoVE (3.2 km vs. 1.8 km nominal swath-width). Despite noise and biases, spatially averaged AirSWOT WSEs can be used to estimate sub-seasonal hydrologic variability, as confirmed with field GPS surveys and in situ pressure transducers. This analysis informs AirSWOT ABoVE data users of known sources of measurement error in the WSEs as influenced by radar parameters including incidence angle, magnitude, coherence, and elevation uncertainty. The analysis also provides recommended best practices for extracting information from the dataset by using filters for these four parameters. Improvements to data handing would significantly increase the accuracy and spatial coverage of future AirSWOT WSE data collections, aiding scientific surface water studies, and improving the platform’s capability as an airborne validation instrument for SWOT

    Cre recombinase expression cooperates with homozygous FLT3 internal tandem duplication knockin mouse model to induce acute myeloid leukemia

    Get PDF
    Murine models offer a valuable tool to recapitulate genetically defined subtypes of AML, and to assess the potential of compound mutations and clonal evolution during disease progression. This is of particular importance for difficult to treat leukemias such as FLT3 internal tandem duplication (ITD) positive AML. While conditional gene targeting by Cre recombinase is a powerful technology that has revolutionized biomedical research, consequences of Cre expression such as lack of fidelity, toxicity or off-target effects need to be taken into consideration. We report on a transgenic murine model of FLT3-ITD induced disease, where Cre recombinase expression alone, and in the absence of a conditional allele, gives rise to an aggressive leukemia phenotype. Here, expression of various Cre recombinases leads to polyclonal expansion of FLT3(ITD/ITD) progenitor cells, induction of a differentiation block and activation of Myc-dependent gene expression programs. Our report is intended to alert the scientific community of potential risks associated with using this specific mouse model and of unexpected effects of Cre expression when investigating cooperative oncogenic mutations in murine models of cancer

    A high-resolution airborne color-infrared camera water mask for the NASA ABoVE campaign

    Get PDF
    The airborne AirSWOT instrument suite, consisting of an interferometric Ka-band synthetic aperture radar and color-infrared (CIR) camera, was deployed to northern North America in July and August 2017 as part of the NASA Arctic-Boreal Vulnerability Experiment (ABoVE).We present validated, open (i.e., vegetation-free) surface water masks produced from high-resolution (1 m), co-registered AirSWOT CIR imagery using a semi-automated, object-based water classification. The imagery and resulting high-resolution water masks are available as open-access datasets and support interpretation of AirSWOT radar and other coincident ABoVE image products, including LVIS, UAVSAR, AIRMOSS, AVIRIS-NG, and CFIS. These synergies offer promising potential for multi-sensor analysis of Arctic-Boreal surface water bodies. In total, 3167 km2 of open surface water were mapped from 23,380 km2 of flight lines spanning 23 degrees of latitude and broad environmental gradients. Detected water body sizes range from 0.00004 km2 (40 m2) to 15 km2. Power-law extrapolations are commonly used to estimate the abundance of small lakes from coarser resolution imagery, and our mapped water bodies followed power-law distributions, but only for water bodies greater than 0.34 (±0.13) km2 in area. For water bodies exceeding this size threshold, the coefficients of power-law fits vary for different Arctic-Boreal physiographic terrains (wetland, prairie pothole, lowland river valley, thermokarst, and Canadian Shield). Thus, direct mapping using high-resolution imagery remains the most accurate way to estimate the abundance of small surface water bodies. We conclude that empirical scaling relationships, useful for estimating total trace gas exchange and aquatic habitats on Arctic-Boreal landscapes, are uniquely enabled by high-resolution AirSWOT-like mappings and automated detection methods such as those developed here
    • 

    corecore