940 research outputs found

    Use of transcutaneous oxygen and carbon dioxide tensions for assessing indices of gas exchange during exercise testing

    Get PDF
    AbstractThe slow response characteristics of the combined transcutaneous electrode have been viewed as a major disadvantage when compared with other types of non-invasive assessment of gas exchange during exercise testing. We have previously shown that by using the highest recommended temperature of 45°C to reduce response times, and combining this with an exercise protocol of gradual work load increments, that this allows changes in arterial blood gases to be closely followed by transcutaneous values. In the present study we have validated the use of a transcutaneous electrode for estimation of alveolar–arterial oxygen gradient (A aO2) and dead space to tidal volume ratio (VD/VT) during exercise, against values calculated from direct arterial blood gas analysis. One hundred measurements were made in 20 patients with various cardiopulmonary disorders who underwent exercise testing. Exercise testing was performed by bicycle ergometry with a specific protocol involving gradual work load increments at 2 min intervals. Transcutaneous gas tensions were measured by a heated combined O2and CO2electrode. Arterial blood was sampled at the midpoint of each stage of exercise and transcutaneous tensions noted at the end of each stage. The mean difference of the A aO2gradient calculated from blood gas tensions obtained by the two methods was 0.14 kPa. The limits of agreement were −0·26 and 0·63 kPa. The same values for VD/VT calculated from gas tensions measured by the two methods were: mean difference 0·001; limits of agreement −0·0242 and 0·0252. For both these parameters there was an even scatter around the mean value on Bland and Altman analysis. The findings of this study suggest that estimation of parameters of gas exchange using transcutaneous values during exercise testing is reliable, provided the electrode is heated to a slightly higher temperature than usual and the work load increments are gradual, allowing for the latency in the response time of the system. This system allows the assessment of the contribution of ventilation/perfusion inequality to breathlessness on exertion in patients, provided an initial arterial or ear lobe capillary sample is obtained for calibration purposes. This technique is particularly valuable in patients undergoing repeat exercise tests as it circumvents the need for arterial cannulation

    On Hawking's Local Rigidity Theorems for Charged Black Holes

    Full text link
    We show the existence of a Hawking vector field in a full neighborhood of a local, regular, bifurcate, non-expanding horizon embedded in a smooth Einstein-Maxwell space-time without assuming the underlying space-time is analytic. It extends one result of Friedrich, R\'{a}cz and Wald, which was limited to the interior of the black hole region. Moreover, we also show, in the presence of an additional Killing vector field TT which tangent to the horizon and not vanishing on the bifurcate sphere, then space-time must be locally axially symmetric without the analyticity assumption. This axial symmetry plays a fundamental role in the classification theory of stationary black holes.Comment: 20 page

    The First Law for Boosted Kaluza-Klein Black Holes

    Get PDF
    We study the thermodynamics of Kaluza-Klein black holes with momentum along the compact dimension, but vanishing angular momentum. These black holes are stationary, but non-rotating. We derive the first law for these spacetimes and find that the parameter conjugate to variations in the length of the compact direction is an effective tension, which generally differs from the ADM tension. For the boosted black string, this effective tension is always positive, while the ADM tension is negative for large boost parameter. We also derive two Smarr formulas, one that follows from time translation invariance, and a second one that holds only in the case of exact translation symmetry in the compact dimension. Finally, we show that the `tension first law' derived by Traschen and Fox in the static case has the form of a thermodynamic Gibbs-Duhem relation and give its extension in the stationary, non-rotating case.Comment: 20 pages, 0 figures; v2 - reference adde

    Ricci flat rotating black branes with a conformally invariant Maxwell source

    Full text link
    We consider Einstein gravity coupled to an U(1)U(1) gauge field for which the density is given by a power of the Maxwell Lagrangian. In dd-dimensions the action of Maxwell field is shown to enjoy the conformal invariance if the power is chosen as d/4d/4. We present a class of charge rotating solutions in Einstein-conformally invariant Maxwell gravity in the presence of a cosmological constant. These solutions may be interpreted as black brane solutions with inner and outer event horizons or an extreme black brane depending on the value of the mass parameter. Since we are considering power of the Maxwell density, the black brane solutions exist only for dimensions which are multiples of four. We compute conserved and thermodynamics quantities of the black brane solutions and show that the expression of the electric field does not depend on the dimension. Also, we obtain a Smarr-type formula and show that these conserved and thermodynamic quantities of black branes satisfy the first law of thermodynamics. Finally, we study the phase behavior of the rotating black branes and show that there is no Hawking--Page phase transition in spite of conformally invariant Maxwell field.Comment: 13 pages, one figur

    On the massive wave equation on slowly rotating Kerr-AdS spacetimes

    Full text link
    The massive wave equation gψαΛ3ψ=0\Box_g \psi - \alpha\frac{\Lambda}{3} \psi = 0 is studied on a fixed Kerr-anti de Sitter background (M,gM,a,Λ)(\mathcal{M},g_{M,a,\Lambda}). We first prove that in the Schwarzschild case (a=0), ψ\psi remains uniformly bounded on the black hole exterior provided that α<9/4\alpha < {9/4}, i.e. the Breitenlohner-Freedman bound holds. Our proof is based on vectorfield multipliers and commutators: The usual energy current arising from the timelike Killing vector field TT (which fails to be non-negative pointwise) is shown to be non-negative with the help of a Hardy inequality after integration over a spacelike slice. In addition to TT, we construct a vectorfield whose energy identity captures the redshift producing good estimates close to the horizon. The argument is finally generalized to slowly rotating Kerr-AdS backgrounds. This is achieved by replacing the Killing vectorfield T=tT=\partial_t with K=t+λϕK=\partial_t + \lambda \partial_\phi for an appropriate λa\lambda \sim a, which is also Killing and--in contrast to the asymptotically flat case--everywhere causal on the black hole exterior. The separability properties of the wave equation on Kerr-AdS are not used. As a consequence, the theorem also applies to spacetimes sufficiently close to the Kerr-AdS spacetime, as long as they admit a causal Killing field KK which is null on the horizon.Comment: 1 figure; typos corrected, references added, introduction revised; to appear in CM

    Entropy of Lovelock Black Holes

    Get PDF
    A general formula for the entropy of stationary black holes in Lovelock gravity theories is obtained by integrating the first law of black hole mechanics, which is derived by Hamiltonian methods. The entropy is not simply one quarter of the surface area of the horizon, but also includes a sum of intrinsic curvature invariants integrated over a cross section of the horizon.Comment: 15 pages, plain Latex, NSF-ITP-93-4

    Production, Collection and Utilization of Very Long-Lived Heavy Charged Leptons

    Full text link
    If a fourth generation of leptons exists, both the neutrino and its charged partner must be heavier than 45 GeV. We suppose that the neutrino is the heavier of the two, and that a global or discrete symmetry prohibits intergenerational mixing. In that case, non-renormalizable Planck scale interactions will induce a very small mixing; dimension five interactions will lead to a lifetime for the heavy charged lepton of O(1100)O(1-100) years. Production of such particles is discussed, and it is shown that a few thousands can be produced and collected at a linear collider. The possible uses of these heavy leptons is also briefly discussed.Comment: 9 pages Late

    A black ring with a rotating 2-sphere

    Full text link
    We present a solution of the vacuum Einstein's equations in five dimensions corresponding to a black ring with horizon topology S^1 x S^2 and rotation in the azimuthal direction of the S^2. This solution has a regular horizon up to a conical singularity, which can be placed either inside the ring or at infinity. This singularity arises due to the fact that this black ring is not balanced. In the infinite radius limit we correctly reproduce the Kerr black string, and taking another limit we recover the Myers-Perry black hole with a single angular momentum.Comment: 10 page

    Effects of acceleration on the collision of particles in the rotating black hole spacetime

    Full text link
    We study the collision of two geodesic particles in the accelerating and rotating black hole spacetime and probe the effects of the acceleration of black hole on the center-of-mass energy of the colliding particles and on the high-velocity collision belts. We find that the dependence of the center-of-mass energy on the acceleration in the near event-horizon collision is different from that in the near acceleration-horizon case. Moreover, the presence of the acceleration changes the shape and position of the high-velocity collision belts. Our results show that the acceleration of black holes brings richer physics for the collision of particles.Comment: 7 pages, 2 figures, The corrected version accepted for publication in EPJ

    Supersymmetric AdS5 black holes

    Full text link
    The first examples of supersymmetric, asymptotically AdS5, black hole solutions are presented. They form a 1-parameter family of solutions of minimal five-dimensional gauged supergravity. Their angular momentum can never vanish. The solutions are obtained by a systematic analysis of supersymmetric solutions with Killing horizons. Other new examples of such solutions are obtained. These include solutions for which the horizon is a homogeneous Nil or SL(2,R) manifold.Comment: 31 pages. v2: References and calculation of holographic stress tensor added. v3: Solutions preserve 2 supersymmetries. Our original claim that they preserve 4 supersymmetries was based on Ref. [30], which contains a mistake (the general timelike solution preserves 2, not 4, supersymmetries). Nothing else affecte
    corecore