1 research outputs found
Quasiparticles of strongly correlated Fermi liquids at high temperatures and in high magnetic fields
Strongly correlated Fermi systems are among the most intriguing, best
experimentally studied and fundamental systems in physics. There is, however,
lack of theoretical understanding in this field of physics. The ideas based on
the concepts like Kondo lattice and involving quantum and thermal fluctuations
at a quantum critical point have been used to explain the unusual physics.
Alas, being suggested to describe one property, these approaches fail to
explain the others. This means a real crisis in theory suggesting that there is
a hidden fundamental law of nature. It turns out that the hidden fundamental
law is well forgotten old one directly related to the Landau---Migdal
quasiparticles, while the basic properties and the scaling behavior of the
strongly correlated systems can be described within the framework of the
fermion condensation quantum phase transition (FCQPT). The phase transition
comprises the extended quasiparticle paradigm that allows us to explain the
non-Fermi liquid (NFL) behavior observed in these systems. In contrast to the
Landau paradigm stating that the quasiparticle effective mass is a constant,
the effective mass of new quasiparticles strongly depends on temperature,
magnetic field, pressure, and other parameters. Our observations are in good
agreement with experimental facts and show that FCQPT is responsible for the
observed NFL behavior and quasiparticles survive both high temperatures and
high magnetic fields.Comment: 17 pages, 17 figures. Dedicated to 100th anniversary of A.B.Migdal
birthda