2 research outputs found

    On the global hydration kinetics of tricalcium silicate cement

    Full text link
    We reconsider a number of measurements for the overall hydration kinetics of tricalcium silicate pastes having an initial water to cement weight ratio close to 0.5. We find that the time dependent ratio of hydrated and unhydrated silica mole numbers can be well characterized by two power-laws in time, x/(1−x)∼(t/tx)ψx/(1-x)\sim (t/t_x)^\psi. For early times t<txt < t_x we find an `accelerated' hydration (ψ=5/2\psi = 5/2) and for later times t>txt > t_x a `deaccelerated' behavior (ψ=1/2\psi = 1/2). The crossover time is estimated as tx≈16hourst_x \approx 16 hours. We interpret these results in terms of a global second order rate equation indicating that (a) hydrates catalyse the hydration process for t<txt<t_x, (b) they inhibit further hydration for t>txt > t_x and (c) the value of the associated second order rate constant is of magnitude 6x10^{-7} - 7x10^{-6} liter mol^{-1} s^{-1}. We argue, by considering the hydration process actually being furnished as a diffusion limited precipitation that the exponents ψ=5/2\psi = 5/2 and ψ=1/2\psi = 1/2 directly indicate a preferentially `plate' like hydrate microstructure. This is essentially in agreement with experimental observations of cellular hydrate microstructures for this class of materials.Comment: RevTeX macros, 6 pages, 4 postscript figure

    Evaluation of bond using FRP rods with axisymmetric deformations

    No full text
    This paper presents experimental results obtained with the direct pull-out test using machined and wrapped glass/vinylester, carbon/vinylester, and carbon/epoxy FRP rods with axisymmetric lugs. The typical results are given as nominal shear stress vs. free- and loaded-end slip. Experimental results obtained from strain probes used during the pull-out test are presented as shear stress vs. strain. Machined glass/vinylester FRP rods with embedded lengths including five and 10 lugs, and different lug widths and heights were studied. The failure mode consisted of the shearing off of the lugs without concrete damage. Four concrete mixtures with strengths ranging from 32 to 66.1 MPa were examined. Provided that enough confinement is used, it was found that the concrete strength has no noticeable effect on the shear strength and failure mode of FRP rods. Results showed that the FRP-concrete bond is controlled by the lug dimension and shear strength of the resin. The shear strength of the wrapped lugs is less than that of machined ones due to fiber orientation and weaker interfacial bond between the wrapped strands and rod surface. (C) 1999 Elsevier Science Ltd. All rights reserved
    corecore