398 research outputs found
Critical properties of loop percolation models with optimization constraints
We study loop percolation models in two and in three space dimensions, in
which configurations of occupied bonds are forced to form closed loop. We show
that the uncorrelated occupation of elementary plaquettes of the square and the
simple cubic lattice by elementary loops leads to a percolation transition that
is in the same universality class as the conventional bond percolation. In
contrast to this an optimization constraint for the loop configurations, which
then have to minimize a particular generic energy function, leads to a
percolation transition that constitutes a new universality class, for which we
report the critical exponents. Implication for the physics of solid-on-solid
and vortex glass models are discussed.Comment: 8 pages, 8 figure
Salerno's model of DNA reanalysed: could solitons have biological significance?
We investigate the sequence-dependent behaviour of localised excitations in a
toy, nonlinear model of DNA base-pair opening originally proposed by Salerno.
Specifically we ask whether ``breather'' solitons could play a role in the
facilitated location of promoters by RNA polymerase. In an effective potential
formalism, we find excellent correlation between potential minima and {\em
Escherichia coli} promoter recognition sites in the T7 bacteriophage genome.
Evidence for a similar relationship between phage promoters and downstream
coding regions is found and alternative reasons for links between AT richness
and transcriptionally-significant sites are discussed. Consideration of the
soliton energy of translocation provides a novel dynamical picture of sliding:
steep potential gradients correspond to deterministic motion, while ``flat''
regions, corresponding to homogeneous AT or GC content, are governed by random,
thermal motion. Finally we demonstrate an interesting equivalence between
planar, breather solitons and the helical motion of a sliding protein
``particle'' about a bent DNA axis.Comment: Latex file 20 pages, 5 figures. Manuscript of paper to appear in J.
Biol. Phys., accepted 02/09/0
Charged lepton Flavor Violation in Supersymmetry with Bilinear R-Parity Violation
The simplest unified extension of the Minimal Supersymmetric Standard Model
with bi-linear R-parity violation naturally predicts a hierarchical neutrino
mass spectrum, suitable to explain atmospheric and solar neutrino fluxes. We
study whether the individual violation of the lepton numbers L_{e,mu,tau} in
the charged sector can lead to measurable rates for BR(mu->e gamma)and
$BR(tau-> mu gamma). We find that some of the R-parity violating terms that are
compatible with the observed atmospheric neutrino oscillations could lead to
rates for mu->e gamma measurable in projected experiments. However, the Delta
m^2_{12} obtained for those parameters is too high to be compatible with the
solar neutrino data, excluding therefore the possibility of having measurable
rates for mu->e gamma in the model.Comment: 29 pages, 8 figures. Constraint from solar neutrino data included,
conclusions changed respect v
Constrained Supersymmetric Flipped SU(5) GUT Phenomenology
We explore the phenomenology of the minimal supersymmetric flipped SU(5) GUT
model (CFSU(5)), whose soft supersymmetry-breaking (SSB) mass parameters are
constrained to be universal at some input scale, , above the GUT scale,
. We analyze the parameter space of CFSU(5) assuming that the lightest
supersymmetric particle (LSP) provides the cosmological cold dark matter,
paying careful attention to the matching of parameters at the GUT scale. We
first display some specific examples of the evolutions of the SSB parameters
that exhibit some generic features. Specifically, we note that the relationship
between the masses of the lightest neutralino and the lighter stau is sensitive
to , as is the relationship between the neutralino mass and the masses
of the heavier Higgs bosons. For these reasons, prominent features in generic
planes such as coannihilation strips and rapid-annihilation
funnels are also sensitive to , as we illustrate for several cases with
tan(beta)=10 and 55. However, these features do not necessarily disappear at
large , unlike the case in the minimal conventional SU(5) GUT. Our
results are relatively insensitive to neutrino masses.Comment: 23 pages, 8 figures; (v2) added explanations and corrected typos,
version to appear in EPJ
Phosphorothioate antisense oligonucleotides induce the formation of nuclear bodies
Antisense oligonucleotides are powerful tools for the in vivo regulation of gene expression. We have characterized the intracellular distribution of fluorescently tagged phosphorothioate oligodeoxynucleotides (PS-ONs) at high resolution under conditions in which PS-ONs have the potential to display antisense activity. Under these conditions PS-ONs predominantly localized to the cell nucleus where they accumulated in 20-30 bright spherical foci designated phosphorothioate bodies (PS bodies), which were set against a diffuse nucleoplasmic population excluding nucleoli. PS bodies are nuclear structures that formed in cells after PS-ON delivery by transfection agents or microinjection but were observed irrespectively of antisense activity or sequence. Ultrastructurally, PS bodies corresponded to electron-dense structures of 150-300 nm diameter and resembled nuclear bodies that were found with lower frequency in cells lacking PS-ONs. The environment of a living cell was required for the de novo formation of PS bodies, which occurred within minutes after the introduction of PS-ONs. PS bodies were stable entities that underwent noticeable reorganization only during mitosis. Upon exit from mitosis, PS bodies were assembled de novo from diffuse PS-ON pools in the daughter nuclei. In situ fractionation demonstrated an association of PS-ONs with the nuclear matrix. Taken together, our data provide evidence for the formation of a nuclear body in cells after introduction of phosphorothioate oligodeoxynucleotides
Applied fault detection and diagnosis for industrial gas turbine systems
The paper presents readily implementable approaches for fault detection and diagnosis (FDD) based on measurements from multiple sensor groups, for industrial systems. Specifically, the use of hierarchical clustering (HC) and self-organizing map neural networks (SOMNNs) are shown to provide robust and user-friendly tools for application to industrial gas turbine (IGT) systems. HC fingerprints are found for normal operation, and FDD is achieved by monitoring cluster changes occurring in the resulting dendrograms. Similarly, fingerprints of operational behaviour are also obtained using SOMNN based classification maps (CMs) that are initially determined during normal operation, and FDD is performed by detecting changes in their CMs. The proposed methods are shown to be capable of FDD from a large group of sensors that measure a variety of physical quantities. A key feature of the paper is the development of techniques to accommodate transient system operation, which can often lead to false-alarms being triggered when using traditional techniques if the monitoring algorithms are not first desensitized. Case studies showing the efficacy of the techniques for detecting sensor faults, bearing tilt pad wear and early stage pre-chamber burnout, are included. The presented techniques are now being applied operationally and monitoring IGTs in various regions of the world
Model-independent search for CP violation in D0âKâK+ÏâÏ+ and D0âÏâÏ+Ï+Ïâ decays
A search for CP violation in the phase-space structures of D0 and View the MathML source decays to the final states KâK+ÏâÏ+ and ÏâÏ+Ï+Ïâ is presented. The search is carried out with a data set corresponding to an integrated luminosity of 1.0 fbâ1 collected in 2011 by the LHCb experiment in pp collisions at a centre-of-mass energy of 7 TeV. For the KâK+ÏâÏ+ final state, the four-body phase space is divided into 32 bins, each bin with approximately 1800 decays. The p-value under the hypothesis of no CP violation is 9.1%, and in no bin is a CP asymmetry greater than 6.5% observed. The phase space of the ÏâÏ+Ï+Ïâ final state is partitioned into 128 bins, each bin with approximately 2500 decays. The p-value under the hypothesis of no CP violation is 41%, and in no bin is a CP asymmetry greater than 5.5% observed. All results are consistent with the hypothesis of no CP violation at the current sensitivity
The PHENIX Experiment at RHIC
The physics emphases of the PHENIX collaboration and the design and current
status of the PHENIX detector are discussed. The plan of the collaboration for
making the most effective use of the available luminosity in the first years of
RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program
available at http://www.rhic.bnl.gov/phenix
Search for the lepton-flavor-violating decays Bs0âe±Όâ and B0âe±Όâ
A search for the lepton-flavor-violating decays Bs0âe±Όâ and B0âe±Όâ is performed with a data sample, corresponding to an integrated luminosity of 1.0ââfb-1 of pp collisions at âs=7ââTeV, collected by the LHCb experiment. The observed number of Bs0âe±Όâ and B0âe±Όâ candidates is consistent with background expectations. Upper limits on the branching fractions of both decays are determined to be B(Bs0âe±Όâ)101ââTeV/c2 and MLQ(B0âe±Όâ)>126ââTeV/c2 at 95% C.L., and are a factor of 2 higher than the previous bounds
- âŠ