8 research outputs found

    Nanophononics: state of the art and perspectives

    Full text link

    New Dimensions in Vascular Engineering: Opportunities for Cancer Biology

    No full text
    Angiogenesis is a fundamental prerequisite for tissue growth and thus an attractive target for cancer therapeutics. However, current efforts to halt tumor growth using antiangiogenic agents have been met with limited success. A reason for this may be that studies aimed at understanding tissue and organ formation have to this point utilized two-dimensional cell culture techniques, which fail to faithfully mimic the pathological architecture of disease in an in vivo context. In this issue of Tissue Engineering, the work of Fischbach-Teschl's group manipulate such variables as oxygen concentration, culture three-dimensionality, and cell–extracellular matrix interactions to more closely approximate the biophysical and biochemical microenvironment of tumor angiogenesis. In this article, we discuss how novel tissue engineering platforms provide a framework for the study of tumorigenesis under pathophysiologically relevant in vitro culture conditions

    Low-energy electron transmission in a partially unzipped zigzag nanotube

    No full text
    Based on the nearest-neighbor tight-binding approximation, we present exact analytical expressions for electron transmission in nanotube/ribbon junctions, generated by incomplete unzipping of zigzag nanotubes. By assuming one-dimer-line difference in the widths of the leads, it is demonstrated that such a contact exhibits zero backscattering of low-energy electrons entering from the graphene side of the junction. We also show that a zigzag nanotube section sandwiched between two armchair graphene ribbons is completely transparent for incident low-energy electrons. Possible application of the results to nanosensor engineering is also included. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010
    corecore