128 research outputs found

    INVESTIGATION OF MACHINING PARAMETERS IN CNC TURNING USING RESPONSE SURFACE METHODOLOGY (RSM)

    Get PDF
    CNC turning is one among the metal cutting process in which quality of the finished product depends mainly upon the machining parameters such as feed, speed, depth of cut, type of coolant used, types of inserts used etc. Similarly the work piece material plays an important role in the metal cutting process. This study involves in identifying the optimized parameters in CNC turning of Aluminium and Stainless Steel. To identify and measure the formation of burrs samples are examined under scanning electron microscope (SEM).The optimization techniques used in this study are Response surface methodology, and Genetic algorithm. These optimization techniques are very helpful in identifying the optimized control factors with high level of accuracy. Brass and Copper (Non Ferrous) materials are taken for this investigation

    OPTIMIZATION OF MACHINING PARAMETERS FOR ECM USING GREY RELATIONAL ANALAYSIS

    Get PDF
    The use of Electrochemical Machining (ECM) as one of the best machining techniques for machining and electrically conducting tough and difficult to machine materials with appropriate machining parameters. In recent years, the utilization of titanium and its alloys, especially grade 2 materials in many different engineering fields has undergone a tremendous increase. The ECM process has a potential in the machining of grade 2. This work describes the development of the second order, non-linear mathematical model without interaction terms for establishing the relationship between machining parameters, such as electrolyte concentration, current, applied voltage and feed rate, with the dominant machining process criteria, namely the material removal rate (MRR) and surface roughness (SR). In this paper, an attempt has been made to machine the grade 2 material (LM6 Al/B2C) using the ECM process. The effects of various process/product parameters like applied voltage, feed rate, electrolyte concentration and percentage of reinforcement on the Material Removal Rate (MRR), surface roughness (SR) were observed. Multiple Regression models are developed based on Grey relational analysis using the relevant experimental data, which are obtained during an ECM operation on grade 2. Validity and creativeness of the developed mathematical models have also been tested through analysis of variance. Graphs, describing the direct effects of process variables on the responses, were plotted. The Optimal combination of these predominant machining process parameters is obtained from these mathematical models considering MRR and SR simultaneously for higher material removal rate and lower surface roughness value. The confirmation results reveal that, there is considerable improvement in Material Removal Rate, Grey relational grade are improved by 08.33 %, 41.17 % and 81.77 % respectively. It is observed that the machining performance can be effectively improved with respect to initial parametric setting. A statistical technique, fractional factorial experiments and analysis of variance (ANOVA), has been employed to investigate the influence of cutting parameters

    An Economic Assessment along the Jatropha-based Biodiesel Value Chain In India

    Get PDF
    The Government of India had launched the National Biofuel Mission in the year 2003 as an initiative to limit the country’s dependence on crude oil imports. An integral part of this mission is the Biodiesel Blending program and Jatropha, a tree-borne biodiesel yielding crop, is the cornerstone of the program. This study has been specifically designed to carry out economic assessment of the upcoming jatropha-based biodiesel value chain in the country. The study, based on primary data collected from three major jatropha growing states, has observed that jatropha cultivation is an economically viable proposition in the long-run as indicated by favourable values of net present value, internal rate of return and benefit cost ratio. Nevertheless, initial government support till attaining break even point is crucial to sustain the interest of the farmers. The jatropha seed processing industry has been found to be viable if operated at sufficient economies of scale, which in turn is determined by the level of backward integration with the seed market and a forward integration with biodiesel distribution channels. However, the existing biodiesel value chain in India lacks this integration and is characterized by under-developed seed markets, sub-optimal processing infrastructure and ill-defined biodiesel distribution channels. The involvement of corporate players to participate in processing and distribution activities has further delayed the program to take off. The study has cautioned that unless proactive orientation of all the stakeholders is ensured, the program may fail to meet its objectives, at least in the medium-term.Agricultural and Food Policy,

    The novel transcriptional regulator SczA mediates protection against Zn2+ stress by activation of the Zn2+-resistance gene czcD in Streptococcus pneumoniae

    Get PDF
    Maintenance of the intracellular homeostasis of metal ions is important for the virulence of many bacterial pathogens. Here, we demonstrate that the czcD gene of the human pathogen Streptococcus pneumoniae is involved in resistance against Zn2+, and that its transcription is induced by the transition-metal ions Zn2+, Co2+ and Ni2+. Upstream of czcD a gene was identified, encoding a novel TetR family regulator, SczA, that is responsible for the metal ion-dependent activation of czcD expression. Transcriptome analyses revealed that in a sczA mutant expression of czcD, a gene encoding a MerR-family transcriptional regulator and a gene encoding a zinc-containing alcohol dehydrogenase (adhB) were downregulated. Activation of the czcD promoter by SczA is shown to proceed by Zn2+-dependent binding of SczA to a conserved DNA motif. In the absence of Zn2+, SczA binds to a second site in the czcD promoter, thereby fully blocking czcD expression. This is the first example of a metalloregulatory protein belonging to the TetR family that has been described. The presence in S. pneumoniae of the Zn2+-resistance system characterized in this study might reflect the need for adjustment to a fluctuating Zn2+ pool encountered by this pathogen during infection of the human body

    Edge reconstructions in fractional quantum Hall systems

    Full text link
    Two dimensional electron systems exhibiting the fractional quantum Hall effects are characterized by a quantized Hall conductance and a dissipationless bulk. The transport in these systems occurs only at the edges where gapless excitations are present. We present a {\it microscopic} calculation of the edge states in the fractional quantum Hall systems at various filling factors using the extended Hamiltonian theory of the fractional quantum Hall effect. We find that at ν=1/3\nu=1/3 the quantum Hall edge undergoes a reconstruction as the background potential softens, whereas quantum Hall edges at higher filling factors, such as ν=2/5,3/7\nu=2/5, 3/7, are robust against reconstruction. We present the results for the dependence of the edge states on various system parameters such as temperature, functional form and range of electron-electron interactions, and the confining potential. Our results have implications for the tunneling experiments into the edge of a fractional quantum Hall system.Comment: 11 pages, 9 figures; minor typos corrected; added 2 reference

    Fermion Chern Simons Theory of Hierarchical Fractional Quantum Hall States

    Full text link
    We present an effective Chern-Simons theory for the bulk fully polarized fractional quantum Hall (FQH) hierarchical states constructed as daughters of general states of the Jain series, {\it i. e.} as FQH states of the quasi-particles or quasi-holes of Jain states. We discuss the stability of these new states and present two reasonable stability criteria. We discuss the theory of their edge states which follows naturally from this bulk theory. We construct the operators that create elementary excitations, and discuss the scaling behavior of the tunneling conductance in different situations. Under the assumption that the edge states of these fully polarized hierarchical states are unreconstructed and unresolved, we find that the differential conductance GG for tunneling of electrons from a Fermi liquid into {\em any} hierarchical Jain FQH states has the scaling behavior GVαG\sim V^\alpha with the universal exponent α=1/ν\alpha=1/\nu, where ν\nu is the filling fraction of the hierarchical state. Finally, we explore alternative ways of constructing FQH states with the same filling fractions as partially polarized states, and conclude that this is not possible within our approach.Comment: 10 pages, 50 references, no figures; formerly known as "Composite Fermions: The Next Generation(s)" (title changed by the PRB thought police). This version has more references and a discussion of the stability of the new states. Published version. One erroneous reference is correcte

    Dynamical Symmetry Breaking in Spaces with Constant Negative Curvature

    Full text link
    By using the Nambu-Jona-Lasinio model, we study dynamical symmetry breaking in spaces with constant negative curvature. We show that the physical reason for zero value of critical coupling value gc=0g_c = 0 in these spaces is connected with the effective reduction of dimension of spacetime 1+D1+11 + D \to 1 + 1 in the infrared region, which takes place for any dimension 1+D1 + D. Since the Laplace-Beltrami operator has a gap in spaces with constant negative curvature, such an effective reduction for scalar fields is absent and there are not problems with radiative corrections due to scalar fields. Therefore, dynamical symmetry breaking with the effective reduction of the dimension of spacetime for fermions in the infrared region is consistent with the Mermin-Wagner-Coleman theorem, which forbids spontaneous symmetry breaking in (1 + 1)-dimensional spacetime.Comment: minor text changes, added new reference

    Global Phase Diagram of the Kondo Lattice: From Heavy Fermion Metals to Kondo Insulators

    Full text link
    We discuss the general theoretical arguments advanced earlier for the T=0 global phase diagram of antiferromagnetic Kondo lattice systems, distinguishing between the established and the conjectured. In addition to the well-known phase of a paramagnetic metal with a "large" Fermi surface (P_L), there is also an antiferromagnetic phase with a "small" Fermi surface (AF_S). We provide the details of the derivation of a quantum non-linear sigma-model (QNLsM) representation of the Kondo lattice Hamiltonian, which leads to an effective field theory containing both low-energy fermions in the vicinity of a Fermi surface and low-energy bosons near zero momentum. An asymptotically exact analysis of this effective field theory is made possible through the development of a renormalization group procedure for mixed fermion-boson systems. Considerations on how to connect the AF_S and P_L phases lead to a global phase diagram, which not only puts into perspective the theory of local quantum criticality for antiferromagnetic heavy fermion metals, but also provides the basis to understand the surprising recent experiments in chemically-doped as well as pressurized YbRh2Si2. We point out that the AF_S phase still occurs for the case of an equal number of spin-1/2 local moments and conduction electrons. This observation raises the prospect for a global phase diagram of heavy fermion systems in the Kondo-insulator regime. Finally, we discuss the connection between the Kondo breakdown physics discussed here for the Kondo lattice systems and the non-Fermi liquid behavior recently studied from a holographic perspective.Comment: (v3) leftover typos corrected. (v2) Published version. 32 pages, 4 figures. Section 7, on the connection between the Kondo lattice systems and the holographic models of non-Fermi liquid, is expanded. (v1) special issue of JLTP on quantum criticalit

    Fractional-quantum-Hall edge electrons and Fermi statistics

    Full text link
    We address the quantum statistics of electrons created in the low-energy edge-state Hilbert space sector of incompressible fractional quantum Hall states, considering the possibility that they may not satisfy Fermi statistics. We argue that this property is not a priori obvious, and present numerical evidence based on finite-size exact-diagonalization calculations that it does not hold in general. We discuss different possible forms for the expression for the electron creation operator in terms of edge boson fields and show that none are consistent with our numerical results on finite-size filling-factor-2/5 states with short-range electron-electron interactions. Finally, we discuss the current body of experimental results on tunneling into quantum Hall edges in the context of this result.Comment: 9 pages, 1 figure, RevTex

    Hamiltonian Description of Composite Fermions: Magnetoexciton Dispersions

    Full text link
    A microscopic Hamiltonian theory of the FQHE, developed by Shankar and myself based on the fermionic Chern-Simons approach, has recently been quite successful in calculating gaps in Fractional Quantum Hall states, and in predicting approximate scaling relations between the gaps of different fractions. I now apply this formalism towards computing magnetoexciton dispersions (including spin-flip dispersions) in the ν=1/3\nu=1/3, 2/5, and 3/7 gapped fractions, and find approximate agreement with numerical results. I also analyse the evolution of these dispersions with increasing sample thickness, modelled by a potential soft at high momenta. New results are obtained for instabilities as a function of thickness for 2/5 and 3/7, and it is shown that the spin-polarized 2/5 state, in contrast to the spin-polarized 1/3 state, cannot be described as a simple quantum ferromagnet.Comment: 18 pages, 18 encapsulated ps figure
    corecore