995 research outputs found

    Evidence for particle-hole excitations in the triaxial strongly-deformed well of ^{163}Tm

    Get PDF
    Two interacting, strongly-deformed triaxial (TSD) bands have been identified in the Z = 69 nucleus ^{163}Tm. This is the first time that interacting TSD bands have been observed in an element other than the Z = 71 Lu nuclei, where wobbling bands have been previously identified. The observed TSD bands in ^{163}Tm appear to be associated with particle-hole excitations, rather than wobbling. Tilted-Axis Cranking (TAC) calculations reproduce all experimental observables of these bands reasonably well and also provide an explanation for the presence of wobbling bands in the Lu nuclei, and their absence in the Tm isotopes.Comment: 13 pages, 7 figure

    Percolation in deposits for competitive models in (1+1)-dimensions

    Full text link
    The percolation behaviour during the deposit formation, when the spanning cluster was formed in the substrate plane, was studied. Two competitive or mixed models of surface layer formation were considered in (1+1)-dimensional geometry. These models are based on the combination of ballistic deposition (BD) and random deposition (RD) models or BD and Family deposition (FD) models. Numerically we find, that for pure RD, FD or BD models the mean height of the percolation deposit hˉ\bar h grows with the substrate length LL according to the generalized logarithmic law hˉ(ln(L))γ\bar h\propto (\ln (L))^\gamma, where γ=1.0\gamma=1.0 (RD), γ=0.88±0.020\gamma=0.88\pm 0.020 (FD) and γ=1.52±0.020\gamma=1.52\pm 0.020 (BD). For BD model, the scaling law between deposit density pp and its mean height hˉ\bar h at the point of percolation of type pphˉ1/νhp-p_\infty \propto \bar h^{-1/\nu_h} are observed, where νh=1.74±0.02\nu_h =1.74\pm0.02 is a scaling coefficient. For competitive models the crossover, %in hh versus LL corresponding to the RD or FD -like behaviour at small LL and the BD-like behaviour at large LL are observed.Comment: 8 pages,4 figures, Latex, uses iopart.cl

    On two-dimensionalization of three-dimensional turbulence in shell models

    Full text link
    Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model, the signatures of so-called two-dimensionalization effect of three-dimensional incompressible, homogeneous, isotropic fully developed unforced turbulence have been studied and reproduced. Within the framework of shell models we have obtained the following results: (i) progressive steepening of the energy spectrum with increased strength of the rotation, and, (ii) depletion in the energy flux of the forward forward cascade, sometimes leading to an inverse cascade. The presence of extended self-similarity and self-similar PDFs for longitudinal velocity differences are also presented for the rotating 3D turbulence case

    Critical depinning force and vortex lattice order in disordered superconductors

    Full text link
    We simulate the ordering of vortices and its effects on the critical current in superconductors with varied vortex-vortex interaction strength and varied pinning strengths for a two-dimensional system. For strong pinning the vortex lattice is always disordered and the critical depinning force only weakly increases with decreasing vortex-vortex interactions. For weak pinning the vortex lattice is defect free until the vortex-vortex interactions have been reduced to a low value, when defects begin to appear with a simultaneous rapid increase in the critical depinning force. In each case the depinning force shows a maximum for non-interacting vortices. The relative height of the peak increases and the peak width decreases for decreasing pinning strength in excellent agreement with experimental trends associated with the peak effect. We show that scaling relations exist between the distance between defects in the vortex lattice and the critical depinning force.Comment: 5 pages, 6 figure

    Scaling fields in the two-dimensional abelian sandpile model

    Get PDF
    We consider the isotropic two-dimensional abelian sandpile model from a perspective based on two-dimensional (conformal) field theory. We compute lattice correlation functions for various cluster variables (at and off criticality), from which we infer the field-theoretic description in the scaling limit. We find a perfect agreement with the predictions of a c=-2 conformal field theory and its massive perturbation, thereby providing direct evidence for conformal invariance and more generally for a description in terms of a local field theory. The question of the height 2 variable is also addressed, with however no definite conclusion yet.Comment: 22 pages, 1 figure (eps), uses revte

    Static Observers in Curved Spaces and Non-inertial Frames in Minkowski Spacetime

    Full text link
    Static observers in curved spacetimes may interpret their proper acceleration as the opposite of a local gravitational field (in the Newtonian sense). Based on this interpretation and motivated by the equivalence principle, we are led to investigate congruences of timelike curves in Minkowski spacetime whose acceleration field coincides with the acceleration field of static observers of curved spaces. The congruences give rise to non-inertial frames that are examined. Specifically we find, based on the locality principle, the embedding of simultaneity hypersurfaces adapted to the non-inertial frame in an explicit form for arbitrary acceleration fields. We also determine, from the Einstein equations, a covariant field equation that regulates the behavior of the proper acceleration of static observers in curved spacetimes. It corresponds to an exact relativistic version of the Newtonian gravitational field equation. In the specific case in which the level surfaces of the norm of the acceleration field of the static observers are maximally symmetric two-dimensional spaces, the energy-momentum tensor of the source is analyzed.Comment: 28 pages, 4 figures

    Metastability and Transient Effects in Vortex Matter Near a Decoupling Transition

    Full text link
    We examine metastable and transient effects both above and below the first-order decoupling line in a 3D simulation of magnetically interacting pancake vortices. We observe pronounced transient and history effects as well as supercooling and superheating between the 3D coupled, ordered and 2D decoupled, disordered phases. In the disordered supercooled state as a function of DC driving, reordering occurs through the formation of growing moving channels of the ordered phase. No channels form in the superheated region; instead the ordered state is homogeneously destroyed. When a sequence of current pulses is applied we observe memory effects. We find a ramp rate dependence of the V(I) curves on both sides of the decoupling transition. The critical current that we obtain depends on how the system is prepared.Comment: 10 pages, 15 postscript figures, version to appear in PR

    A comment on multiple vacua, particle production and the time dependent AdS/CFT correspondence

    Full text link
    We give an explicit formulation of the time dependent AdS/CFT correspondence when there are multiple vacua present in Lorentzian signature. By computing sample two point functions we show how different amplitudes are related by cosmological particle production. We illustrate our methods in two example spacetimes: (a) a ``bubble of nothing'' in AdS space, and (b) an asymptotically locally AdS spacetime with a bubble of nothing on the boundary. In both cases the alpha vacua of de Sitter space make an interesting appearance.Comment: 9 page

    Deterministically Driven Avalanche Models of Solar Flares

    Full text link
    We develop and discuss the properties of a new class of lattice-based avalanche models of solar flares. These models are readily amenable to a relatively unambiguous physical interpretation in terms of slow twisting of a coronal loop. They share similarities with other avalanche models, such as the classical stick--slip self-organized critical model of earthquakes, in that they are driven globally by a fully deterministic energy loading process. The model design leads to a systematic deficit of small scale avalanches. In some portions of model space, mid-size and large avalanching behavior is scale-free, being characterized by event size distributions that have the form of power-laws with index values, which, in some parameter regimes, compare favorably to those inferred from solar EUV and X-ray flare data. For models using conservative or near-conservative redistribution rules, a population of large, quasiperiodic avalanches can also appear. Although without direct counterparts in the observational global statistics of flare energy release, this latter behavior may be relevant to recurrent flaring in individual coronal loops. This class of models could provide a basis for the prediction of large solar flares.Comment: 24 pages, 11 figures, 2 tables, accepted for publication in Solar Physic
    corecore