4,428 research outputs found

    Impacts of dust reduction on the northward expansion of the African monsoon during the Green Sahara period

    Get PDF
    AbstractThe West African Monsoon (WAM) is crucial for the socio-economic stability of millions of people living in the Sahel. Severe droughts have ravaged the region in the last three decades of the 20th century, highlighting the need for a better understanding of the WAM dynamics. One of the most dramatic changes in the West African Monsoon (WAM) occurred between 15000–5000 yr BP, when increased summer rainfall led to the so-called “Green Sahara” and to a reduction in dust emissions from the region. However, model experiments are unable to fully reproduce the intensification and geographical expansion of the WAM during this period, even when vegetation over the Sahara is considered. Here, we use a fully coupled simulation for 6000 yr BP (Mid-Holocene) in which prescribed Saharan vegetation and dust concentrations are changed in turn. A closer agreement with proxy records is obtained only when both the Saharan vegetation changes and dust decrease are taken into account. The dust reduction strengthens the vegetation–albedo feedback, extending the monsoon's northern limit approximately 500 km further than the vegetation-change case only. We therefore conclude that accounting for changes in Saharan dust loadings is essential for improving model simulations of the WAM during the Mid-Holocene

    Impurity corrections to the thermodynamics in spin chains using a transfer-matrix DMRG method

    Full text link
    We use the density matrix renormalization group (DMRG) for transfer matrices to numerically calculate impurity corrections to thermodynamic properties. The method is applied to two impurity models in the spin-1/2 chain, namely a weak link in the chain and an external impurity spin. The numerical analysis confirms the field theory calculations and gives new results for the crossover behavior.Comment: 9 pages in revtex format including 5 embedded figures (using epsf). To appear in PRB. The latest version in PDF format can be found at http://fy.chalmers.se/~eggert/papers/DMRGimp.pd

    Topological effects at short antiferromagnetic Heisenberg chains

    Full text link
    The manifestations of topological effects in finite antiferromagnetic Heisenberg chains is examined by density matrix renormalization group technique in this paper. We find that difference between integer and half-integer spin chains shows up in ground state energy per site when length of spin chain is longer than ξ\sim\xi, where ξexp(πS)\xi\sim\exp(\pi S) is a spin-spin correlation length, for spin magnitude S up to 5/2. For open chains with spin magnitudes S=5/2S=5/2 to S=5, we verify that end states with fractional spin quantum numbers SS' exist and are visible even when the chain length is much smaller than the correlation length ξ\xi. The end states manifest themselves in the structure of the low energy excitation spectrum.Comment: 4 pages, 6 figure

    The transition between hole-pairs and four-hole clusters in four-leg tJ ladders

    Full text link
    Holes weakly doped into a four-leg \tj ladder bind in pairs. At dopings exceeding a critical doping of δc1/8\delta_c\simeq {1/8} four hole clusters are observed to form in DMRG calculations. The symmetry of the ground state wavefunction does not change and we are able to reproduce this behavior qualitatively with an effective bosonic model in which the four-leg ladder is represented as two coupled two-leg ladders and hole-pairs are mapped on hard core bosons moving along and between these ladders. At lower dopings, δ<δc\delta<\delta_c, a one dimensional bosonic representation for hole-pairs works and allows us to calculate accurately the Luttinger liquid parameter \krho, which takes the universal value \krho=1 as half-filling is approached

    Numerical renormalization group study of the 1D t-J model

    Full text link
    The one-dimensional (1D) tJt-J model is investigated using the density matrix renormalization group (DMRG) method. We report for the first time a generalization of the DMRG method to the case of arbitrary band filling and prove a theorem with respect to the reduced density matrix that accelerates the numerical computation. Lastly, using the extended DMRG method, we present the ground state electron momentum distribution, spin and charge correlation functions. The 3kF3k_F anomaly of the momentum distribution function first discussed by Ogata and Shiba is shown to disappear as JJ increases. We also argue that there exists a density-independent JcJ_c beyond which the system becomes an electron solid.Comment: Wrong set of figures were put in the orginal submissio

    Spatially homogeneous ground state of the two-dimensional Hubbard model

    Full text link
    We investigate the stability with respect to phase separation or charge density-wave formation of the two-dimensional Hubbard model for various values of the local Coulomb repulsion and electron densities using Green-function Monte Carlo techniques. The well known sign problem is particularly serious in the relevant region of small hole doping. We show that the difference in accuracy for different doping makes it very difficult to probe the phase separation instability using only energy calculations, even in the weak-coupling limit (U=4tU=4t) where reliable results are available. By contrast, the knowledge of the charge correlation functions allows us to provide clear evidence of a spatially homogeneous ground state up to U=10tU=10t.Comment: 7 pages and 5 figures. Phys. Rev. B, to appear 200

    Quantum-fluctuation-induced repelling interaction of quantum string between walls

    Full text link
    Quantum string, which was brought into discussion recently as a model for the stripe phase in doped cuprates, is simulated by means of the density-matrix-renormalization-group method. String collides with adjacent neighbors, as it wonders, owing to quantum zero-point fluctuations. The energy cost due to the collisions is our main concern. Embedding a quantum string between rigid walls with separation d, we found that for sufficiently large d, collision-induced energy cost obeys the formula \sim exp (- A d^alpha) with alpha=0.808(1), and string's mean fluctuation width grows logarithmically \sim log d. Those results are not understood in terms of conventional picture that the string is `disordered,' and only the short-wave-length fluctuations contribute to collisions. Rather, our results support a recent proposal that owing to collisions, short-wave-length fluctuations are suppressed, but instead, long-wave-length fluctuations become significant. This mechanism would be responsible for stabilizing the stripe phase

    Quantum-fluctuation-induced collisions and subsequent excitation gap of an elastic string between walls

    Full text link
    An elastic string embedded between rigid walls is simulated by means of the density-matrix renormalization group. The string collides against the walls owing to the quantum-mechanical zero-point fluctuations. Such ``quantum entropic'' interaction has come under thorough theoretical investigation in the context of the stripe phase observed experimentally in doped cuprates. We found that the excitation gap opens in the form of exponential singularity DeltaE ~ exp(-Ad^sigma) (d: wall spacing) with the exponent sigma =0.6(3), which is substantially smaller than the meanfield value sigma=2. That is, the excitation gap is much larger than that anticipated from meanfield, suggesting that the string is subjected to robust pinning potential due to the quantum collisions. This feature supports Zaanen's ``order out of disorder'' mechanism which would be responsible to the stabilization of the stripe phase

    A Bosonic Model of Hole Pairs

    Full text link
    We numerically investigate a bosonic representation for hole pairs on a two-leg t-J ladder where hard core bosons on a chain represent the hole pairs on the ladder. The interaction between hole pairs is obtained by fitting the density profile obtained with the effective model to the one obtained with the \tj model, taking into account the inner structure of the hole pair given by the hole-hole correlation function. For these interactions we calculate the Luttinger liquid parameter, which takes the universal value Kρ=1K_{\rho}=1 as half filling is approached, for values of the rung exchange JJ' between strong coupling and the isotropic case. The long distance behavior of the hole-hole correlation function is also investigated. Starting from large JJ', the correlation length first increases as expected, but diminishes significantly as JJ' is reduced and bound holes sit mainly on adjacent rungs. As the isotropic case is approached, the correlation length increases again. This effect is related to the different kind of bonds in the region between the two holes of a hole pair when they move apart.Comment: 11 page
    corecore