5 research outputs found
Gene expression time delays & Turing pattern formation systems
The incorporation of time delays can greatly affect the behaviour of partial differential equations and dynamical systems. In addition, there is evidence that time delays in gene expression due to transcription and translation play an important role in the dynamics of cellular systems. In this paper, we investigate the effects of incorporating gene expression time delays into a one-dimensional putative reaction diffusion pattern formation mechanism on both stationary domains and domains with spatially uniform exponential growth. While oscillatory behaviour is rare, we find that the time taken to initiate and stabilise patterns increases dramatically as the time delay is increased. In addition, we observe that on rapidly growing domains the time delay can induce a failure of the Turing instability which cannot be predicted by a naive linear analysis of the underlying equations about the homogeneous steady state. The dramatic lag in the induction of patterning, or even its complete absence on occasions, highlights the importance of considering explicit gene expression time delays in models for cellular reaction diffusion patterning
The influence of gene expression time delays on Gierer-Meinhardt pattern formation systems
There are numerous examples of morphogen gradients controlling long range signalling in developmental and cellular systems. The prospect of two such interacting morphogens instigating long range self-organisation in biological systems via a Turing bifurcation has been explored, postulated, or implicated in the context of numerous developmental processes. However, modelling investigations of cellular systems typically neglect the influence of gene expression on such dynamics, even though transcription and translation are observed to be important in morphogenetic systems. In particular, the influence of gene expression on a large class of Turing bifurcation models, namely those with pure kinetics such as the Gierer–Meinhardt system, is unexplored. Our investigations demonstrate that the behaviour of the Gierer–Meinhardt model profoundly changes on the inclusion of gene expression dynamics and is sensitive to the sub-cellular details of gene expression. Features such as concentration blow up, morphogen oscillations and radical sensitivities to the duration of gene expression are observed and, at best, severely restrict the possible parameter spaces for feasible biological behaviour. These results also indicate that the behaviour of Turing pattern formation systems on the inclusion of gene expression time delays may provide a means of distinguishing between possible forms of interaction kinetics. Finally, this study also emphasises that sub-cellular and gene expression dynamics should not be simply neglected in models of long range biological pattern formation via morphogens