19 research outputs found

    Measurement of the Zero Crossing in a Feshbach Resonance of Fermionic 6-Li

    Full text link
    We measure a zero crossing in the scattering length of a mixture of the two lowest hyperfine states of 6-Li. To locate the zero crossing, we monitor the decrease in temperature and atom number arising from evaporation in a CO2 laser trap as a function of magnetic field B. The temperature decrease and atom loss are minimized for B=528(4) G, consistent with no evaporation. We also present preliminary calculations using potentials that have been constrained by the measured zero crossing and locate a broad Feshbach resonance at approximately 860 G, in agreement with previous theoretical predictions. In addition, our theoretical model predicts a second and much narrower Feshbach resonance near 550 G.Comment: Five pages, four figure

    All-optical formation of a Bose-Einstein condensate for applications in scanning electron microscopy

    Full text link
    We report on the production of a F=1 spinor condensate of 87Rb atoms in a single beam optical dipole trap formed by a focused CO2 laser. The condensate is produced 13mm below the tip of a scanning electron microscope employing standard all-optical techniques. The condensate fraction contains up to 100,000 atoms and we achieve a duty cycle of less than 10s.Comment: 5 pages, 4 figure

    Effects of the trapping potential on a superfluid atomic Fermi Gas

    Full text link
    We examine a dilute two-component atomic Fermi gas trapped in a harmonic potential in the superfluid phase. For experimentally realistic parameters, the trapping potential is shown to have crucial influence on various properties of the gas. Using an effective hamiltonian, analytical results for the critical temperature, the temperature dependence of the superfluid gap, and the energy of the lowest collective modes are derived. These results are shown to agree well with numerical calculations. We furthermore discuss in more detail a previous proposed method to experimentally observe the superfluid transition by looking at the collective mode spectrum. Our results are aimed at the present experimental effort to observe a superfluid phase transition in a trapped atomic Fermi gas.Comment: 2. revised version. Minor mistakes in equation references corrected. To appear in Phys. Rev.

    Collective ferromagnetism in two-component Fermi-degenerate gas trapped in finite potential

    Full text link
    Spin asymmetry of the ground states is studied for the trapped spin-degenerate (two-component) gases of the fermionic atoms with the repulsive interaction between different components, and, for large particle number, the asymmetric (collective ferromagnetic) states are shown to be stable because it can be energetically favorable to increase the fermi energy of one component rather than the increase of the interaction energy between up-down components. We formulate the Thomas-Fermi equations and show the algebraic methods to solve them. From the Thomas-Fermi solutions, we find three kinds of ground states in finite system: 1) paramagnetic (spin-symmetric), 2) ferromagnetic (equilibrium) and 3) ferromagnetic (nonequilibrium) states. We show the density profiles and the critical atom numbers for these states obtained analytically, and, in ferromagnetic states, the spin-asymmetries are shown to occur in the central regions of the trapped gas, and grows up with increasing particle number. Based on the obtained results, we discuss the experimental conditions and current difficulties to realize the ferromagnetic states of the trapped atom gas, which should be overcome.Comment: submit to PR

    Two-fermion bound state in a Bose-Einstein condensate

    Full text link
    A nonlinear Schr\"odinger equation is derived for the dynamics of a beam of ultracold fermionic atoms traversing a Bose-Einstein condensate. The condensate phonon modes are shown to provide a nonlinear medium for the fermionic atoms. A two-fermion bound state is predicted to arise, and the signature of the bound state in a nonlinear atom optics experiment is discussed.Comment: 4 pages, 1 figure

    Laser-induced collective excitations in a two-component Fermi gas

    Full text link
    We consider the linear density response of a two-component (superfluid) Fermi gas of atoms when the perturbation is caused by laser light. We show that various types of laser excitation schemes can be transformed into linear density perturbations, however, a Bragg spectroscopy scheme is needed for transferring energy and momentum into a collective mode. This makes other types of laser probing schemes insensitive for collective excitations and therefore well suited for the detection of the superfluid order parameter. We show that for the special case when laser light is coupled between the two components of the Fermi gas, density response is always absent in a homogeneous system.Comment: 6 pages, no figure

    Superfluid transition temperature in a trapped gas of Fermi atoms with a Feshbach resonance

    Full text link
    We investigate strong coupling effects on the superfluid phase transition in a gas of Fermi atoms with a Feshbach resonance. The Feshbach resonance describes a composite quasi-Boson, which can give rise to an additional pairing interaction between the Fermi atoms. This attractive interaction becomes stronger as the threshold energy of the Feshbach resonance two-particle bound state is lowered. In a recent paper, we showed that in the uniform Fermi gas, this tunable pairing interaction naturally leads to a BCS-BEC crossover of the Nozi`eres and Schmitt-Rink kind, in which the BCS-type superfluid phase transition continuously changes into the BEC-type as the threshold energy is decreased. In this paper, we extend our previous work by including the effect of a harmonic trap potential, treated within the local density approximation (LDA). We also give results for both weak and strong coupling to the Feshbach resonance. We show that the BCS-BEC crossover phenomenon strongly modifies the shape of the atomic density profile at the superfluid phase transition temperature Tc, reflecting the change of the dominant particles going from Fermi atoms to composite Bosons. In the BEC regime, these composite Bosons are shown to first appear well above Tc. We also discuss the "phase diagram" above Tc as a function of the tunable threshold energy. We introduce a characteristic temperature T* describing the effective crossover in the normal phase from a Fermi gas of atoms to a gas of stable molecules.Comment: 43 pages, 13 figures (submitted to PRA

    Hydrodynamic excitations of trapped dipolar fermions

    Full text link
    A single-component Fermi gas of polarized dipolar particles in a harmonic trap can undergo a mechanical collapse due to the attractive part of the dipole-dipole interaction. This phenomenon can be conveniently manipulated by the shape of the external trapping potential. We investigate the signatures of the instability by studying the spectrum of low-lying collective excitations of the system in the hydrodynamic regime. To this end, we employ a time-dependent variational method as well as exact numerical solutions of the hydrodynamic equations of the system.Comment: 4 pages, 2 eps figures, final versio

    Laser cooling of a trapped two-component Fermi gas

    Full text link
    The collective Raman cooling of a trapped two-component Fermi gas is analyzed. We develop the quantum master equation that describes the collisions and the laser cooling, in the festina lente regime, where the heating due to photon reabsorption can be neglected. The numerical results based on Monte Carlo simulations show, that three-dimensional temperatures of the order of 0.008 T_F can be achieved. We analyze the heating related to the background losses, and conclude that our laser-cooling scheme can maintain the temperature of the gas without significant additional losses. Finally we derive an analytic expression for the temperature of a trapped Fermi gas heated by background collisions, that agrees very well with the data obtained from the numerical simulation.Comment: 5 pages, 3 figure

    Quantum Limits of Stochastic Cooling of a Bosonic Gas

    Full text link
    The quantum limits of stochastic cooling of trapped atoms are studied. The energy subtraction due to the applied feedback is shown to contain an additional noise term due to atom-number fluctuations in the feedback region. This novel effect is shown to dominate the cooling efficiency near the condensation point. Furthermore, we show first results that indicate that Bose--Einstein condensation could be reached via stochastic cooling.Comment: 5 pages, 3 figures, to appear in Phys. Rev.
    corecore