27 research outputs found
Energy and spatial resolution of a Shashlik calorimeter and a silicon preshower detector
New projective prototypes of a scintillator/lead sandwich type sampling calorimeter Shashlik with a silicon preshower detector have been constructed and tested with an electron beam at CERN-SPS. The energy resolution is measured to be 8.7%/√E(GeV) in stochastic term, 0.330/E(GeV) in noise term and 0.5% in constant term. The angular resolution is better than 70 mrad/√E(GeV)
A bonding study toward the quality assurance of Belle-II silicon vertex detector modules
A silicon vertex detector (SVD) for the Belle-II experiment comprises four layers of double-sided silicon strip detectors (DSSDs), assembled in a ladder-like structure. Each ladder module of the outermost SVD layer has four rectangular and one trapezoidal DSSDs supported by two carbon-fiber ribs. In order to achieve a good signal-to-noise ratio and minimize material budget, a novel chip-on-sensor "Origami" method has been employed for the three rectangular sensors that are sandwiched between the backward rectangular and forward (slanted) trapezoidal sensors. This paper describes the bonding procedures developed for making electrical connections between sensors and signal fan-out flex circuits (i.e., pitch adapters), and between pitch adapters and readout chips as well as the results in terms of the achieved bonding quality and pull force
The Belle II silicon vertex detector assembly and mechanics
The Belle II experiment at the asymmetric SuperKEKB collider in Japan will operate at an instantaneous luminosity approximately 50 times greater than its predecessor (Belle). The central feature of the experiment is a vertex detector comprising two layers of pixelated silicon detectors (PXD) and four layers of double-sided silicon microstrip detectors (SVD). One of the key measurements for Belle II is CP violation asymmetry in the decays of beauty and charm hadrons, which hinges on a precise charged-track vertex determination and low-momentum track measurement. Towards this goal, a proper assembly of the SVD components with precise alignment ought to be performed and the geometrical tolerances should be checked to fall within the design limits. We present an overview of the assembly procedure that is being followed, which includes the precision gluing of the SVD module components, wire-bonding of the various electrical components, and precision 3D coordinate measurements of the final SVD modules.Finally, some results from the latest test-beam are reported
Belle II SVD ladder assembly procedure and electrical qualification
The Belle II experiment at the SuperKEKB asymmetric e+e- collider in Japan will operate at a luminosity approximately 50 times larger than its predecessor (Belle). At its heart lies a six-layer vertex detector comprising two layers of pixelated silicon detectors (PXD) and four layers of double-sided silicon microstrip detectors (SVD). One of the key measurements for Belle II is time-dependent CP violation asymmetry, which hinges on a precise charged-track vertex determination. Towards this goal, a proper assembly of the SVD components with precise alignment ought to be performed and the geometrical tolerances should be checked to fall within the design limits. We present an overview of the assembly procedure that is being followed, which includes the precision gluing of the SVD module components, wire-bonding of the various electrical components, and precision three dimensional coordinate measurements of the jigs used in assembly as well as of the final SVD modules
The silicon vertex detector of the Belle II experiment
The silicon vertex detector of the Belle II experiment, structured in a lantern shape, consists of four layers of ladders, fabricated from two to five silicon sensors. The APV25 readout ASIC chips are mounted on one side of the ladder to minimize the signal path for reducing the capacitive noise; signals from the sensor backside are transmitted to the chip by bent flexible fan-out circuits. The ladder is assembled using several dedicated jigs. Sensor motion on the jig is minimized by vacuum chucking. The gluing procedure provides such a rigid foundation that later leads to the desired wire bonding performance. The full ladder with electrically functional sensors is consistently completed with a fully developed assembly procedure, and its sensor offsets from the design values are found to be less than 200. \u3bcm. The potential functionality of the ladder is also demonstrated by the radioactive source test
Hadron calorimetry in the L3 detector
The characteristics of the L3 hadron calorimeter as realized in the observation of hadronic jets and other events from e+e- collisions at LEP are presented and discussed. The pattern-recognition algorithm utilizing the fine granulatiry of the calorimeter is described, and the observed overall resolution of 10.2% for hadron jets from Z decay is reported. The use of the calorimeter in providing information on muon energy losses is also noted.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29386/1/0000457.pd
Belle II silicon vertex detector
The Belle II experiment at the SuperKEKB collider in Japan is designed to indirectly probe new physics using approximately 50 times the data recorded by its predecessor. An accurate determination of the decay-point position of subatomic particles such as beauty and charm hadrons as well as a precise measurement of low-momentum charged particles will play a key role in this pursuit. These will be accomplished by an inner tracking device comprising two layers of pixelated silicon detector and four layers of silicon vertex detector based on double-sided microstrip sensors. We describe herein the design, prototyping and construction efforts of the Belle-II silicon vertex detector
