266 research outputs found

    Experimentally well-constrained masses of 27P and 27S: implications for studies of explosive binary systems

    Get PDF
    The mass of 27P is expected to impact the X-ray burst (XRB) model predictions of burst light curves and the composition of the burst ashes, but large uncertainties and inconsistencies still exist in the reported 27P masses. We have used the ß-decay spectroscopy of 27S to determine the most precise mass excess of 27P to date to be keV, which is 63 keV (2.3s) higher and a factor of 3 more precise than the value recommended in the 2016 Atomic Mass Evaluation. Based on the new 27P mass, the P reaction rate and its uncertainty were recalculated using Monte Carlo techniques. We also estimated the previously unknown mass excess of 27S to be 17678(77) keV, based on the measured ß-delayed two-proton energy and the Coulomb displacement energy relations. The impact of these well-constrained masses and reaction rates on the modeling of the explosive astrophysical scenarios has been investigated by post-processing XRB and hydrodynamic nova models. Compared to the model calculations based on the masses and rates from databases, the abundance of in the burst ashes is increased by a factor of 2.4, while no substantial change was found in the XRB energy generation rate or the light curve. Our calculation also suggests that 27S is not a significant waiting point in the rapid proton capture process, and the change of the P reaction rate is not sufficiently large to affect the conclusion previously drawn on the nova contribution to the synthesis of galactic 26Al.Postprint (published version

    MEK1 drives oncogenic signaling and interacts with PARP1 for genomic and metabolic homeostasis in malignant pleural mesothelioma.

    Get PDF
    Malignant pleural mesothelioma (MPM) is a lethal malignancy etiologically caused by asbestos exposure, for which there are few effective treatment options. Although asbestos carcinogenesis is associated with reactive oxygen species (ROS), the bona fide oncogenic signaling pathways that regulate ROS homeostasis and bypass ROS-evoked apoptosis in MPM are poorly understood. In this study, we demonstrate that the mitogen-activated protein kinase (MAPK) pathway RAS-RAF-MEK-ERK is hyperactive and a molecular driver of MPM, independent of histological subtypes and genetic heterogeneity. Suppression of MAPK signaling by clinically approved MEK inhibitors (MEKi) elicits PARP1 to protect MPM cells from the cytotoxic effects of MAPK pathway blockage. Mechanistically, MEKi induces impairment of homologous recombination (HR) repair proficiency and mitochondrial metabolic activity, which is counterbalanced by pleiotropic PARP1. Consequently, the combination of MEK with PARP inhibitors enhances apoptotic cell death in vitro and in vivo that occurs through coordinated upregulation of cytotoxic ROS in MPM cells, suggesting a mechanism-based, readily translatable strategy to treat this daunting disease. Collectively, our studies uncover a previously unrecognized scenario that hyperactivation of the MAPK pathway is an essential feature of MPM and provide unprecedented evidence that MAPK signaling cooperates with PARP1 to homeostatically maintain ROS levels and escape ROS-mediated apoptosis

    Intrasubband and Intersubband Electron Relaxation in Semiconductor Quantum Wire Structures

    Full text link
    We calculate the intersubband and intrasubband many-body inelastic Coulomb scattering rates due to electron-electron interaction in two-subband semiconductor quantum wire structures. We analyze our relaxation rates in terms of contributions from inter- and intrasubband charge-density excitations separately. We show that the intersubband (intrasubband) charge-density excitations are primarily responsible for intersubband (intrasubband) inelastic scattering. We identify the contributions to the inelastic scattering rate coming from the emission of the single-particle and the collective excitations individually. We obtain the lifetime of hot electrons injected in each subband as a function of the total charge density in the wire.Comment: Submitted to PRB. 20 pages, Latex file, and 7 postscript files with Figure

    Hawking Radiation of Black Holes in Infrared Modified Ho\v{r}ava-Lifshitz Gravity

    Full text link
    We study the Hawking radiation of the spherically symmetric, asymptotically flat black holes in the infrared modified Horava-Lifshitz gravity by applying the methods of covariant anomaly cancellation and effective action, as well as the approach of Damour-Ruffini-Sannan's. These black holes behave as the usual Schwarzschild ones of the general relativity when the radial distance is very large. We also extend the method of covariant anomaly cancellation to derive the Hawking temperature of the spherically symmetric, asymptotically AdS black holes that represent the analogues of the Schwarzschild AdS ones.Comment: no figures, 16 pages,accepted by EPJ

    Inelastic lifetimes of confined two-component electron systems in semiconductor quantum wire and quantum well structures

    Full text link
    We calculate Coulomb scattering lifetimes of electrons in two-subband quantum wires and in double-layer quantum wells by obtaining the quasiparticle self-energy within the framework of the random-phase approximation for the dynamical dielectric function. We show that, in contrast to a single-subband quantum wire, the scattering rate in a two-subband quantum wire contains contributions from both particle-hole excitations and plasmon excitations. For double-layer quantum well structures, we examine individual contributions to the scattering rate from quasiparticle as well as acoustic and optical plasmon excitations at different electron densities and layer separations. We find that the acoustic plasmon contribution in the two-component electron system does not introduce any qualitatively new correction to the low energy inelastic lifetime, and, in particular, does not produce the linear energy dependence of carrier scattering rate as observed in the normal state of high-TcT_c superconductors.Comment: 16 pages, RevTeX, 7 figures. Also available at http://www-cmg.physics.umd.edu/~lzheng

    Anomaly analysis of Hawking radiation from Kaluza-Klein black hole with squashed horizon

    Full text link
    Considering gravitational and gauge anomalies at the horizon, a new method that to derive Hawking radiations from black holes has been developed by Wilczek et al. In this paper, we apply this method to non-rotating and rotating Kaluza-Klein black holes with squashed horizon, respectively. For the rotating case, we found that, after the dimensional reduction, an effective U(1) gauge field is generated by an angular isometry. The results show that the gauge current and energy-momentum tensor fluxes are exactly equivalent to Hawking radiation from the event horizon.Comment: 15 pages, no figures, the improved version, accepted by Eur. Phys. J.

    Partial Wave Analysis of J/ψγ(K+Kπ+π)J/\psi \to \gamma (K^+K^-\pi^+\pi^-)

    Full text link
    BES data on J/ψγ(K+Kπ+π)J/\psi \to \gamma (K^+K^-\pi^+\pi^-) are presented. The KKˉK^*\bar K^* contribution peaks strongly near threshold. It is fitted with a broad 0+0^{-+} resonance with mass M=1800±100M = 1800 \pm 100 MeV, width Γ=500±200\Gamma = 500 \pm 200 MeV. A broad 2++2^{++} resonance peaking at 2020 MeV is also required with width 500\sim 500 MeV. There is further evidence for a 2+2^{-+} component peaking at 2.55 GeV. The non-KKˉK^*\bar K^* contribution is close to phase space; it peaks at 2.6 GeV and is very different from KKˉK^{*}\bar{K^{*}}.Comment: 15 pages, 6 figures, 1 table, Submitted to PL
    corecore