2 research outputs found
A Weyl-Dirac Cosmological Model with DM and DE
In the Weyl-Dirac (W-D) framework a spatially closed cosmological model is
considered. It is assumed that the space-time of the universe has a chaotic
Weylian microstructure but is described on a large scale by Riemannian
geometry. Locally fields of the Weyl connection vector act as creators of
massive bosons having spin 1. It is suggested that these bosons, called
weylons, provide most of the dark matter in the universe. At the beginning the
universe is a spherically symmetric geometric entity without matter. Primary
matter is created by Dirac's gauge function very close to the beginning. In the
early epoch, when the temperature of the universe achieves its maximum,
chaotically oriented Weyl vector fields being localized in micro-cells create
weylons. In the dust dominated period Dirac's gauge function is giving rise to
dark energy, the latter causing the cosmic acceleration at present. This
oscillatory universe has an initial radius identical to the Plank length =
1.616 exp (-33) cm, at present the cosmic scale factor is 3.21 exp (28) cm,
while its maximum value is 8.54 exp (28) cm. All forms of matter are created by
geometrically based functions of the W-D theory.Comment: 25 pages. Submitted to GR
Non-minimal coupling of the scalar field and inflation
We study the prescriptions for the coupling constant of a scalar field to the
Ricci curvature of spacetime in specific gravity and scalar field theories. The
results are applied to the most popular inflationary scenarios of the universe;
their theoretical consistency and certain observational constraints are
discussed.Comment: 23 pages, LaTex, no figures, to appear in Physical Review