2 research outputs found

    A Weyl-Dirac Cosmological Model with DM and DE

    Full text link
    In the Weyl-Dirac (W-D) framework a spatially closed cosmological model is considered. It is assumed that the space-time of the universe has a chaotic Weylian microstructure but is described on a large scale by Riemannian geometry. Locally fields of the Weyl connection vector act as creators of massive bosons having spin 1. It is suggested that these bosons, called weylons, provide most of the dark matter in the universe. At the beginning the universe is a spherically symmetric geometric entity without matter. Primary matter is created by Dirac's gauge function very close to the beginning. In the early epoch, when the temperature of the universe achieves its maximum, chaotically oriented Weyl vector fields being localized in micro-cells create weylons. In the dust dominated period Dirac's gauge function is giving rise to dark energy, the latter causing the cosmic acceleration at present. This oscillatory universe has an initial radius identical to the Plank length = 1.616 exp (-33) cm, at present the cosmic scale factor is 3.21 exp (28) cm, while its maximum value is 8.54 exp (28) cm. All forms of matter are created by geometrically based functions of the W-D theory.Comment: 25 pages. Submitted to GR

    Non-minimal coupling of the scalar field and inflation

    Full text link
    We study the prescriptions for the coupling constant of a scalar field to the Ricci curvature of spacetime in specific gravity and scalar field theories. The results are applied to the most popular inflationary scenarios of the universe; their theoretical consistency and certain observational constraints are discussed.Comment: 23 pages, LaTex, no figures, to appear in Physical Review
    corecore