4 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Parametric Representation of Paragraphs and Their Classification

    Full text link

    Time and Reference Systems

    Full text link
    Geodesy is the science of the measurement and mapping of the Earth’s surface, and in this context it is also the science that defines and realizes coordinates and associated coordinate systems. Geodesy thus is the foundation for all applications of global navigation satellite system (GNSS). This chapter presents the reference systems needed to describe coordinates of points on the Earth’s surface or in near space and to relate coordinate systems among each other, as well as to some absolute system, visually, a celestial system. The topic is primarily one of geometry, but the geodynamics of the Earth as a rotating body in the solar system plays a fundamental role in defining and transforming coordinate systems. Therefore, also the fourth coordinate, time, is critical not only as the independent variable in the dynamical theories, but also as a parameter in modern geodetic measurement systems. Instead of expounding the theory of geodynamics and celestial mechanics, it is sufficient for the purpose of this chapter to describe the corresponding phenomena, textually, analytically and illustratively, in order to give a sense of the scope of the tasks involved in providing accurate coordinate reference systems not just to geodesists, but to all geoscientists
    corecore