11 research outputs found
Structure, Photophysics and the Order-Disorder Transition to the Beta Phase in Poly(9,9-(di -n,n-octyl)fluorene)
X-ray diffraction, UV-vis absorption and photoluminescence (PL) spectroscopy
have been used to study the well-known order-disorder transition (ODT) to the
beta phase in poly(9,9-(di n,n-octyl)fluorene)) (PF8) thin film samples through
combination of time-dependent and temperature-dependent measurements. The ODT
is well described by a simple Avrami picture of one-dimensional nucleation and
growth but crystallization, on cooling, proceeds only after molecular-level
conformational relaxation to the so called beta phase. Rapid thermal quenching
is employed for PF8 studies of pure alpha phase samples while extended
low-temperature annealing is used for improved beta phase formation. Low
temperature PL studies reveal sharp Franck-Condon type emission bands and, in
the beta phase, two distinguishable vibronic sub-bands with energies of
approximately 199 and 158 meV at 25 K. This improved molecular level structural
order leads to a more complete analysis of the higher-order vibronic bands. A
net Huang-Rhys coupling parameter of just under 0.7 is typically observed but
the relative contributions by the two distinguishable vibronic sub-bands
exhibit an anomalous temperature dependence. The PL studies also identify
strongly correlated behavior between the relative beta phase 0-0 PL peak
position and peak width. This relationship is modeled under the assumption that
emission represents excitons in thermodynamic equilibrium from states at the
bottom of a quasi-one-dimensional exciton band. The crystalline phase, as
observed in annealed thin-film samples, has scattering peaks which are
incompatible with a simple hexagonal packing of the PF8 chains.Comment: Submitted to PRB, 12 files; 1 tex, 1 bbl, 10 eps figure
Anemia prevalence in women of reproductive age in low- and middle-income countries between 2000 and 2018
Anemia is a globally widespread condition in women and is associated with reduced economic productivity and increased mortality worldwide. Here we map annual 2000–2018 geospatial estimates of anemia prevalence in women of reproductive age (15–49 years) across 82 low- and middle-income countries (LMICs), stratify anemia by severity and aggregate results to policy-relevant administrative and national levels. Additionally, we provide subnational disparity analyses to provide a comprehensive overview of anemia prevalence inequalities within these countries and predict progress toward the World Health Organization’s Global Nutrition Target (WHO GNT) to reduce anemia by half by 2030. Our results demonstrate widespread moderate improvements in overall anemia prevalence but identify only three LMICs with a high probability of achieving the WHO GNT by 2030 at a national scale, and no LMIC is expected to achieve the target in all their subnational administrative units. Our maps show where large within-country disparities occur, as well as areas likely to fall short of the WHO GNT, offering precision public health tools so that adequate resource allocation and subsequent interventions can be targeted to the most vulnerable populations.Peer reviewe
Light, Not Age, Underlies the Maladaptation of Maize and Miscanthus Photosynthesis to Self-Shading
Zea mays and Miscanthus × giganteus use NADP-ME subtype C4 photosynthesis and are important food and biomass crops, respectively. Both crops are grown in dense stands where shaded leaves can contribute a significant proportion of overall canopy productivity. This is because shaded leaves, despite intercepting little light, typically process light energy very efficiently for photosynthesis, when compared to light-saturated leaves at the top of the canopy. However, an apparently maladaptive loss in photosynthetic light-use efficiency as leaves become shaded has been shown to reduce productivity in these two species. It is unclear whether this is due to leaf aging or progressive shading from leaves forming above. This was resolved here by analysing photosynthesis in leaves of the same chronological age in the centre and exposed southern edge of field plots of these crops. Photosynthetic light-response curves were used to assess maximum quantum yield of photosynthesis; the key measure of photosynthetic capacity of a leaf in shade. Compared to the upper canopy, maximum quantum yield of photosynthesis of lower canopy leaves was significantly reduced in the plot centre; but increased slightly at the plot edge. This indicates loss of efficiency of shaded leaves is due not to aging, but to the altered light environment of the lower canopy, i.e., reduced light intensity and/or altered spectral composition. This work expands knowledge of the cause of this maladaptive shade response, which limits productivity of some of the world’s most important crops. © Copyright © 2020 Collison, Raven, Pignon and Long