23 research outputs found
From Interstellar Ice Grains to Evolved Planetary Systems: The Role of Laboratory Studies
Interstellar matter and star formatio
Treasurehunt: Transients and variability discovered with HST in the JWST North Ecliptic Pole time-domain field
The James Webb Space Telescope (JWST) North Ecliptic Pole (NEP) Time-domain Field (TDF) is a >14' diameter field optimized for multiwavelength time-domain science with JWST. It has been observed across the electromagnetic spectrum both from the ground and from space, including with the Hubble Space Telescope (HST). As part of HST observations over three cycles (the "TREASUREHUNT" program), deep images were obtained with the Wide Field Camera on the Advanced Camera for Surveys in F435W and F606W that cover almost the entire JWST NEP TDF. Many of the individual pointings of these programs partially overlap, allowing an initial assessment of the potential of this field for time-domain science with HST and JWST. The cumulative area of overlapping pointings is ∼88 arcmin2, with time intervals between individual epochs that range between 1 day and 4+ yr. To a depth of mAB ≃ 29.5 mag (F606W), we present the discovery of 12 transients and 190 variable candidates. For the variable candidates, we demonstrate that Gaussian statistics are applicable and estimate that ∼80 are false positives. The majority of the transients will be supernovae, although at least two are likely quasars. Most variable candidates are active galactic nuclei (AGNs), where we find 0.42% of the general z ≲ 6 field galaxy population to vary at the ∼3σ level. Based on a 5 yr time frame, this translates into a random supernova areal density of up to ∼0.07 transients arcmin−2 (∼245 deg−2) per epoch and a variable AGN areal density of ∼1.25 variables arcmin−2 (∼4500 deg−2) to these depths
The Need for Laboratory Measurements and Ab Initio Studies to Aid Understanding of Exoplanetary Atmospheres
Laboratory astrophysics and astrochemistr
The 1 mm spectrum of VY Canis Majoris: Chemistry in an O-rich envelope
We present preliminary results of an unbiased spectral survey at 1 mm of the oxygen-rich supergiant, VY CMa. A number of exotic molecules have been detected, including NaC1 and PO, and a relatively rich organic chemistry is observed. Results of the survey will be compared with carbon-rich stars
The 1 mm spectrum of VY Canis Majoris: Chemistry in an O-rich envelope
We present preliminary results of an unbiased spectral survey at 1 mm of the oxygen-rich supergiant, VY CMa. A number of exotic molecules have been detected, including NaC1 and PO, and a relatively rich organic chemistry is observed. Results of the survey will be compared with carbon-rich stars
Recommended from our members
Near to Mid-infrared Spectroscopy of (65803) Didymos as Observed by JWST: Characterization Observations Supporting the Double Asteroid Redirection Test
The Didymos binary asteroid was the target of the Double Asteroid Redirection Test (DART) mission, which intentionally impacted Dimorphos, the smaller member of the binary system. We used the Near-Infrared Spectrograph and Mid-Infrared Instrument instruments on JWST to measure the 0.6-5 and 5-20 μm spectra of Didymos approximately two months after the DART impact. These observations confirm that Didymos belongs to the S asteroid class and is most consistent with LL chondrite composition, as was previously determined from its 0.6-2.5 μm reflectance spectrum. Measurements at wavelengths >2.5 μm show Didymos to have thermal properties typical for an S-complex asteroid of its size and to be lacking absorptions deeper than ∼2% due to OH or H2O. Didymos’ mid-infrared emissivity spectrum is within the range of what has been measured on S-complex asteroids observed with the Spitzer Space Telescope and is most consistent with emission from small (<25 μm) surface particles. We conclude that the observed reflectance and physical properties make the Didymos system a good proxy for the type of ordinary chondrite asteroids that cross near-Earth space, and a good representative of likely future impactors. © 2023. The Author(s). Published by the American Astronomical Society.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]