190 research outputs found

    Thermal and back-action noises in dual-sphere gravitational-waves detectors

    Get PDF
    We study the sensitivity limits of a broadband gravitational-waves detector based on dual resonators such as nested spheres. We determine both the thermal and back-action noises when the resonators displacements are read-out with an optomechanical sensor. We analyze the contributions of all mechanical modes, using a new method to deal with the force-displacement transfer functions in the intermediate frequency domain between the two gravitational-waves sensitive modes associated with each resonator. This method gives an accurate estimate of the mechanical response, together with an evaluation of the estimate error. We show that very high sensitivities can be reached on a wide frequency band for realistic parameters in the case of a dual-sphere detector.Comment: 10 pages, 7 figure

    The detection of Gravitational Waves

    Get PDF
    This chapter is concerned with the question: how do gravitational waves (GWs) interact with their detectors? It is intended to be a theory review of the fundamental concepts involved in interferometric and acoustic (Weber bar) GW antennas. In particular, the type of signal the GW deposits in the detector in each case will be assessed, as well as its intensity and deconvolution. Brief reference will also be made to detector sensitivity characterisation, including very summary data on current state of the art GW detectors.Comment: 33 pages, 12 figures, LaTeX2e, Springer style files --included. For Proceedings of the ERE-2001 Conference (Madrid, September 2001

    Wormhole Geometries In f(R,T)f(R,T) Gravity

    Full text link
    We study wormhole solutions in the framework of f (R,T) gravity where R is the scalar curvature, and T is the trace of the stress-energy tensor of the matter. We have obtained the shape function of the wormhole by specifying an equation of state for the matter field and imposing the flaring out condition at the throat. We show that in this modified gravity scenario, the matter threading the wormhole may satisfy the energy conditions, so it is the effective stress-energy that is responsible for violation of the null energy condition.Comment: 9 pages, 4 figures, published version, references adde

    Phantom-Like Behavior of a DGP-Inspired Scalar-Gauss-Bonnet Gravity

    Full text link
    We study the phantom-like behavior of a DGP-inspired braneworld scenario where curvature correction on the brane is taken into account. We include a possible modification of the induced gravity on the brane by incorporating higher order curvature terms of Gauss-Bonnet type. We investigate the cosmological implications of the model and we show that the normal branch of the scenario self-accelerates in this modified scenario without introducing any dark energy component. Also, a phantom-like behavior can be realized in this model without introducing any phantom field that suffers from serious difficulties such as violation of the null energy condition.Comment: 20 pages, revised version, typos fixed, new references, to appear in JCA

    Star Models with Dark Energy

    Full text link
    We have constructed star models consisting of four parts: (i) a homogeneous inner core with anisotropic pressure (ii) an infinitesimal thin shell separating the core and the envelope; (iii) an envelope of inhomogeneous density and isotropic pressure; (iv) an infinitesimal thin shell matching the envelope boundary and the exterior Schwarzschild spacetime. We have analyzed all the energy conditions for the core, envelope and the two thin shells. We have found that, in order to have static solutions, at least one of the regions must be constituted by dark energy. The results show that there is no physical reason to have a superior limit for the mass of these objects but for the ratio of mass and radius.Comment: 20 pages, 1 figure, references and some comments added, typos corrected, in press GR

    A minimal set of invariants as a systematic approach to higher order gravity models: Physical and Cosmological Constraints

    Full text link
    We compare higher order gravity models to observational constraints from magnitude-redshift supernova data, distance to the last scattering surface of the CMB, and Baryon Acoustic Oscillations. We follow a recently proposed systematic approach to higher order gravity models based on minimal sets of curvature invariants, and select models that pass some physical acceptability conditions (free of ghost instabilities, real and positive propagation speeds, and free of separatrices). Models that satisfy these physical and observational constraints are found in this analysis and do provide fits to the data that are very close to those of the LCDM concordance model. However, we find that the limitation of the models considered here comes from the presence of superluminal mode propagations for the constrained parameter space of the models.Comment: 12 pages, 6 figure

    f(R,L_m) gravity

    Get PDF
    We generalize the f(R)f(R) type gravity models by assuming that the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar RR and of the matter Lagrangian LmL_m. We obtain the gravitational field equations in the metric formalism, as well as the equations of motion for test particles, which follow from the covariant divergence of the energy-momentum tensor. The equations of motion for test particles can also be derived from a variational principle in the particular case in which the Lagrangian density of the matter is an arbitrary function of the energy-density of the matter only. Generally, the motion is non-geodesic, and takes place in the presence of an extra force orthogonal to the four-velocity. The Newtonian limit of the equation of motion is also considered, and a procedure for obtaining the energy-momentum tensor of the matter is presented. The gravitational field equations and the equations of motion for a particular model in which the action of the gravitational field has an exponential dependence on the standard general relativistic Hilbert--Einstein Lagrange density are also derived.Comment: 6 pages, no figures; minor modifications, references added; accepted for publication in EPJ
    corecore