17 research outputs found
Dynamics of multipartite quantum correlations under decoherence
Quantum discord is an optimal resource for the quantification of classical
and non-classical correlations as compared to other related measures. Geometric
measure of quantum discord is another measure of quantum correlations.
Recently, the geometric quantum discord for multipartite states has been
introduced by Jianwei Xu [arxiv:quant/ph.1205.0330]. Motivated from the recent
study [Ann. Phys. 327 (2012) 851] for the bipartite systems, I have
investigated global quantum discord (QD) and geometric quantum discord (GQD)
under the influence of external environments for different multipartite states.
Werner-GHZ type three-qubit and six-qubit states are considered in inertial and
non-inertial settings. The dynamics of QD and GQD is investigated under
amplitude damping, phase damping, depolarizing and flipping channels. It is
seen that the quantum discord vanishes for p>0.75 in case of three-qubit GHZ
states and for p>0.5 for six qubit GHZ states. This implies that multipartite
states are more fragile to decoherence for higher values of N. Surprisingly, a
rapid sudden death of discord occurs in case of phase flip channel. However,
for bit flip channel, no sudden death happens for the six-qubit states. On the
other hand, depolarizing channel heavily influences the QD and GQD as compared
to the amplitude damping channel. It means that the depolarizing channel has
the most destructive influence on the discords for multipartite states. From
the perspective of accelerated observers, it is seen that effect of environment
on QD and GQD is much stronger than that of the acceleration of non-inertial
frames. The degradation of QD and GQD happens due to Unruh effect. Furthermore,
QD exhibits more robustness than GQD when the multipartite systems are exposed
to environment.Comment: 15 pages, 4 figures, 4 table