33 research outputs found

    Robotic IVC Surgery

    Get PDF

    Australian evidence-based guidelines for the prevention and management of diabetes-related foot disease: a guideline summary

    Get PDF
    INTRODUCTION: Diabetes-related foot disease (DFD) - foot ulcers, infection, ischaemia - is a leading cause of hospitalisation, disability, and health care costs in Australia. The previous 2011 Australian guideline for DFD was outdated. We developed new Australian evidence-based guidelines for DFD by systematically adapting suitable international guidelines to the Australian context using the ADAPTE and GRADE approaches recommended by the NHMRC. MAIN RECOMMENDATIONS: This article summarises the most relevant of the 98 recommendations made across six new guidelines for the general medical audience, including: prevention - screening, education, self-care, footwear, and treatments to prevent DFD; classification - classifications systems for ulcers, infection, ischaemia and auditing; peripheral artery disease (PAD) - examinations and imaging for diagnosis, severity classification, and treatments; infection - examinations, cultures, imaging and inflammatory markers for diagnosis, severity classification, and treatments; offloading - pressure offloading treatments for different ulcer types and locations; and wound healing - debridement, wound dressing selection principles and wound treatments for non-healing ulcers. CHANGES IN MANAGEMENT AS A RESULT OF THE GUIDELINE: For people without DFD, key changes include using a new risk stratification system for screening, categorising risk and managing people at increased risk of DFD. For those categorised at increased risk of DFD, more specific self-monitoring, footwear prescription, surgical treatments, and activity management practices to prevent DFD have been recommended. For people with DFD, key changes include using new ulcer, infection and PAD classification systems for assessing, documenting and communicating DFD severity. These systems also inform more specific PAD, infection, pressure offloading, and wound healing management recommendations to resolve DFD.Peter A Lazzarini, Anita Raspovic, Jenny Prentice, Robert J Commons, Robert A Fitridge, James Charles, Jane Cheney, Nytasha Purcell, Stephen M Twig

    ParMarkSplit: A Parallel Mark-Split Garbage Collector Based on a Lock-Free Skip-List

    No full text
    Mark-split is a garbage collection algorithm that combines advantages of both the mark-sweep and the copying collection algorithms. In this paper, we present a parallel mark-split garbage collector (GC). Our parallel design introduces and makes use of an efficient concurrency control mechanism for handling the list of free memory intervals. This mechanism is based on a lock-free skip-list design which supports an extended set of operations. Beside basic operations, it can perform a composite one that can search and remove and also insert two elements atomically. We have implemented the parallel mark-split GC in OpenJDK’s HotSpot virtual machine. We experimentally evaluate our collector and compare it with the default concurrent mark-sweep GC in HotSpot, using the DaCapo benchmarks, on two contemporary multiprocessor systems; one has 12 Intel Nehalem cores with HyperThreading and the other has 48 AMD Bulldozer cores. The evaluation shows that our parallel mark-split keeps the characteristics of the sequential mark-split, that it performs better than the concurrent mark-sweep in applications that have low live/garbage ratio, and have live objects locating contiguously, therefore being marked consecutively. Our parallel mark-split performs significantly better than a trivial parallelization based on locks in terms of both collection time and scalability
    corecore