2 research outputs found

    Partially conserved axial current constraints on pion production/absorption within nonrelativistic dynamics

    Full text link
    We show the necessity of two-nucleon axial currents and associated pion emission/ absorption operators for the partial conservation of the axial current (PCAC) nuclear matrix elements with arbitrary nuclear dynamics described by a nonrelativistic Schroedinger equation. As examples we construct such nonrelativistic axial two-body currents in the linear- and heterotic (g_A = 1.26) sigma models, with an optional isoscalar vector (omega) meson exchange. The nuclear matrix elements obey PCAC only if the nuclear wave functions used in the calculation are solutions to the Schroedinger equation with the static one-meson-exchange potential constructed in the respective (sigma) model. The same holds true for the nucler pion production amplitude, since it is proportional to the divergence of the axial current matrix element, by virtue of PCAC. Thus we found a new consistency condition between the pion creation/absorption operator and the nuclear Hamiltonian. We present examples drawn from our models and discuss implications for one-pion-two-nucleon processes.Comment: 19 pages, 7 figures, submitted to Phys. Rev.
    corecore