187 research outputs found
Machine Learning in Automated Text Categorization
The automated categorization (or classification) of texts into predefined
categories has witnessed a booming interest in the last ten years, due to the
increased availability of documents in digital form and the ensuing need to
organize them. In the research community the dominant approach to this problem
is based on machine learning techniques: a general inductive process
automatically builds a classifier by learning, from a set of preclassified
documents, the characteristics of the categories. The advantages of this
approach over the knowledge engineering approach (consisting in the manual
definition of a classifier by domain experts) are a very good effectiveness,
considerable savings in terms of expert manpower, and straightforward
portability to different domains. This survey discusses the main approaches to
text categorization that fall within the machine learning paradigm. We will
discuss in detail issues pertaining to three different problems, namely
document representation, classifier construction, and classifier evaluation.Comment: Accepted for publication on ACM Computing Survey
The energy spectrum of tau leptons induced by the high energy Earth-skimming neutrinos
We present a semi-analytic calculation of the tau-lepton flux emerging from
the Earth, induced by the incident high energy neutrinos interacting inside the
Earth for . We obtain results for
the energy dependence of the tau-lepton flux coming from the Earth-skimming
neutrinos, because of the neutrino-nucleon charged-current scattering as well
as the resonant scattering. We illustrate our results for
several anticipated high energy astrophysical neutrino sources such as the
AGNs, the GRBs, and the GZK neutrino fluxes. The tau lepton fluxes resulting
from rock-skimming and ocean-skimming neutrinos are compared. Such comparisons
can render useful information for the spectral indices of incident neutrino
fluxes.Comment: 23 pages, 6 figure
Test of the weak cosmic censorship conjecture with a charged scalar field and dyonic Kerr-Newman black holes
A thought experiment considered recently in the literature, in which it is
investigated whether a dyonic Kerr-Newman black hole can be destroyed by
overcharging or overspinning it past extremality by a massive complex scalar
test field, is revisited. Another derivation of the result that this is not
possible, i.e. the weak cosmic censorship is not violated in this thought
experiment, is given. The derivation is based on conservation laws, on a null
energy condition, and on specific properties of the metric and the
electromagnetic field of dyonic Kerr-Newman black holes. The metric is kept
fixed, whereas the dynamics of the electromagnetic field is taken into account.
A detailed knowledge of the solutions of the equations of motion is not needed.
The approximation in which the electromagnetic field is fixed is also
considered, and a derivation for this case is also given. In addition, an older
version of the thought experiment, in which a pointlike test particle is used,
is revisited. The same result, namely the non-violation of the cosmic
censorship, is rederived in a way which is simpler than in earlier works.Comment: 18 pages, LaTe
The Challenges of Creativity in Software Organizations
Part 1: Creating ValueInternational audienceManaging creativity has proven to be one of the most important drivers in software development and use. The continuous changing market environment drives companies like Google, SAS Institute and LEGO to focus on creativity as an increasing necessity when competing through sustained innovations. However, creativity in the information systems (IS) environment is a challenge for most organizations that is primarily caused by not knowing how to strategize creative processes in relation to IS strategies, thus, causing companies to act ad hoc in their creative endeavors. In this paper, we address the organizational challenges of creativity in software organizations. Grounded in a previous literature review and a rigorous selection process, we identify and present a model of seven important factors for creativity in software organizations. From these factors, we identify 21 challenges that software organizations experience when embarking on creative endeavors and transfer them into a comprehensive framework. Using an interpretive research study, we further study the framework by analyzing how the challenges are integrated in 27 software organizations. Practitioners can use this study to gain a deeper understanding of creativity in their own business while researchers can use the framework to gain insight while conducting interpretive field studies of managing creativity
On exact solutions for quantum particles with spin S= 0, 1/2, 1 and de Sitter event horizon
Exact wave solutions for particles with spin 0, 1/2 and 1 in the static
coordinates of the de Sitter space-time model are examined in detail. Firstly,
for a scalar particle, two pairs of linearly independent solutions are
specified explicitly: running and standing waves. A known algorithm for
calculation of the reflection coefficient on the background of
the de Sitter space-time model is analyzed. It is shown that the determination
of R_{\epsilon j} requires an additional constrain on quantum numbers \epsilon
\rho / \hbar c >> j, where \rho is a curvature radius. When taken into account
of this condition, the R_{\epsilon j} vanishes identically. It is claimed that
the calculation of the reflection coefficient R_{\epsilon j} is not required at
all because there is no barrier in an effective potential curve on the
background of the de Sitter space-time. The same conclusion holds for arbitrary
particles with higher spins, it is demonstrated explicitly with the help of
exact solutions for electromagnetic and Dirac fields.Comment: 30 pages. This paper is an updated and more comprehensive version of
the old paper V.M. Red'kov. On Particle penetrating through de Sitter
horizon. Minsk (1991) 22 pages Deposited in VINITI 30.09.91, 3842 - B9
Energy loss due to defect formation from 206Pb recoils in SuperCDMS germanium detectors
The Super Cryogenic Dark Matter Search experiment at the Soudan Underground Laboratory studied energy loss associated with defect formation in germanium crystals at mK temperatures using in situ 210Pb sources. We examine the spectrum of 206Pb nuclear recoils near its expected 103 keV endpoint energy and determine an energy loss of (6:08 ± 0:18)%, which we attribute to defect formation. From this result and using TRIM simulations, we extract the first experimentally determined average displacement threshold energy of 19.7+0.6−0.5 eV for germanium. This has implications for the analysis thresholds of future germanium-based dark matter searches
Classical Simulation of Relativistic Quantum Mechanics in Periodic Optical Structures
Spatial and/or temporal propagation of light waves in periodic optical
structures offers a rather unique possibility to realize in a purely classical
setting the optical analogues of a wide variety of quantum phenomena rooted in
relativistic wave equations. In this work a brief overview of a few optical
analogues of relativistic quantum phenomena, based on either spatial light
transport in engineered photonic lattices or on temporal pulse propagation in
Bragg grating structures, is presented. Examples include spatial and temporal
photonic analogues of the Zitterbewegung of a relativistic electron, Klein
tunneling, vacuum decay and pair-production, the Dirac oscillator, the
relativistic Kronig-Penney model, and optical realizations of non-Hermitian
extensions of relativistic wave equations.Comment: review article (invited), 14 pages, 7 figures, 105 reference
All-sky search for long-duration gravitational wave transients with initial LIGO
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society
All-sky search for long-duration gravitational wave transients with initial LIGO
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society
Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model
We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society
- …