461 research outputs found
Recommended from our members
Evidence against water delivery by impacts within 10 million years of planetesimal formation
The quenched (rapidly-cooled) angrite meteorites, which formed in the inner Solar System, record large-scale planetary mixing in the first few Ma of Solar System history, and therefore, provide a unique opportunity to investigate the role of impacts in terms of water addition to the growing planetesimals. Here we investigate the H isotopic composition and H2O abundance of relict olivine grains that survived impact melting within Asuka (A) 12,209 and compare them with impact melt-produced groundmass fractions using in-situ nanoscale secondary ion mass spectrometry (NanoSIMS). These analyses test if the angrite parent body (APB) acquired a CC-like H isotopic composition before early large-scale impact mixing and/or acquired volatiles by subsequent impact(s). Furthermore, we analyse the H isotopic composition and H2O abundance of later-forming plutonic (NWA 4801), intermediate (NWA 10,463) and dunitic (NWA 8535) angrite meteorites to assess the role of impacts, in terms of volatile delivery, during the first 50 Ma of the inner Solar System history. The H isotopic composition of most quenched angrites appears to be affected by degassing. Consequently, we opt to use the weighted average ÎŽD of pyroxenes and olivines in the plutonic angrite, NWA 4801, to estimate the original composition of the APB (-235 ± 113 â° 1Ï, n = 18), in agreement with recent studies on the hydrogen isotopic signatures of mineral-hosted melt inclusions in D'Orbigny and Sahara 99,555. Additionally, we use the H2O abundances of NWA 4801 pyroxene (7.9 ± 1 ”g/g 2Ï) and olivine (6.1 ± 0.6 ”g/g 2Ï) to estimate the lower (85 to 110 ”g/g) and upper (519 to 1089 ”g/g) limits of the primitive APB mantle H2O content, implying that the APB was one of the most hydrated bodies in the early inner Solar System. The similarity of ÎŽD/H2O systematics in the relict olivine grains and groundmass olivine within A 12,209 argues against water delivery through impacts in the early inner Solar System. Overall, the non-carbonaceous reservoir in the inner Solar System appears to retain a single source of water, which isotopically resembles either water ice in carbonaceous chondrite parent bodies or fractionated nebula water
Manual mapping of drumlins in synthetic landscapes to assess operator effectiveness
Mapped topographic features are important for understanding processes that sculpt the Earth's surface. This paper presents maps that are the primary product of an exercise that brought together 27 researchers with an interest in landform mapping wherein the efficacy and causes of variation in mapping were tested using novel synthetic DEMs containing drumlins. The variation between interpreters (e.g. mapping philosophy, experience) and across the study region (e.g. woodland prevalence) opens these factors up to assessment. A priori known answers in the synthetics increase the number and strength of conclusions that may be drawn with respect to a traditional comparative study. Initial results suggest that overall detection rates are relatively low (34â40%), but reliability of mapping is higher (72â86%). The maps form a reference dataset
A solution of the coincidence problem based on the recent galactic core black hole mass density increase
A mechanism capable to provide a natural solution to two major cosmological
problems, i.e. the cosmic acceleration and the coincidence problem, is
proposed. A specific brane-bulk energy exchange mechanism produces a total dark
pressure, arising when adding all normal to the brane negative pressures in the
interior of galactic core black holes. This astrophysically produced negative
dark pressure explains cosmic acceleration and why the dark energy today is of
the same order to the matter density for a wide range of the involved
parameters. An exciting result of the analysis is that the recent rise of the
galactic core black hole mass density causes the recent passage from cosmic
deceleration to acceleration. Finally, it is worth mentioning that this work
corrects a wide spread fallacy among brane cosmologists, i.e. that escaping
gravitons result to positive dark pressure.Comment: 14 pages, 3 figure
Improved W boson mass measurement with the D0 detector
We have measured the W boson mass using the D0 detector and a data sample of
82 pb^-1 from the Tevatron collider. This measurement used W -> e nu decays,
where the electron is close to a boundary of a central electromagnetic
calorimeter module. Such 'edge' electrons have not been used in any previous D0
analysis, and represent a 14% increase in the W boson sample size. For these
electrons, new response and resolution parameters are determined, and revised
backgrounds and underlying event energy flow measurements are made. When the
current measurement is combined with previous D0 W boson mass measurements, we
obtain M_W = 80.483 +/- 0.084 GeV. The 8% improvement from the previous D0
measurement is primarily due to the improved determination of the response
parameters for non-edge electrons using the sample of Z bosons with non-edge
and edge electrons.Comment: submitted to Phys. Rev. D; 20 pages, 18 figures, 9 table
Measurement of the p-pbar -> Wgamma + X cross section at sqrt(s) = 1.96 TeV and WWgamma anomalous coupling limits
The WWgamma triple gauge boson coupling parameters are studied using p-pbar
-> l nu gamma + X (l = e,mu) events at sqrt(s) = 1.96 TeV. The data were
collected with the DO detector from an integrated luminosity of 162 pb^{-1}
delivered by the Fermilab Tevatron Collider. The cross section times branching
fraction for p-pbar -> W(gamma) + X -> l nu gamma + X with E_T^{gamma} > 8 GeV
and Delta R_{l gamma} > 0.7 is 14.8 +/- 1.6 (stat) +/- 1.0 (syst) +/- 1.0 (lum)
pb. The one-dimensional 95% confidence level limits on anomalous couplings are
-0.88 < Delta kappa_{gamma} < 0.96 and -0.20 < lambda_{gamma} < 0.20.Comment: Submitted to Phys. Rev. D Rapid Communication
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt{s} = 1.96 TeV using Kinematic Characteristics of Lepton + Jets Events
We present a measurement of the top quark pair ttbar production cross section
in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb**{-1}
of data collected by the DO detector at the Fermilab Tevatron Collider. We
select events with one charged lepton (electron or muon), large missing
transverse energy, and at least four jets, and extract the ttbar content of the
sample based on the kinematic characteristics of the events. For a top quark
mass of 175 GeV, we measure sigma(ttbar) = 6.7 {+1.4-1.3} (stat) {+1.6- 1.1}
(syst) +/-0.4 (lumi) pb, in good agreement with the standard model prediction.Comment: submitted to Phys.Rev.Let
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging
We present a measurement of the top quark pair () production cross
section () in collisions at TeV
using 230 pb of data collected by the D0 experiment at the Fermilab
Tevatron Collider. We select events with one charged lepton (electron or muon),
missing transverse energy, and jets in the final state. We employ
lifetime-based b-jet identification techniques to further enhance the
purity of the selected sample. For a top quark mass of 175 GeV, we
measure pb, in
agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let
Measurement of the Isolated Photon Cross Section in p-pbar Collisions at sqrt{s}=1.96 TeV
The cross section for the inclusive production of isolated photons has been
measured in p anti-p collisions at sqrt{s}=1.96 TeV with the D0 detector at the
Fermilab Tevatron Collider. The photons span transverse momenta 23 to 300 GeV
and have pseudorapidity |eta|<0.9. The cross section is compared with the
results from two next-to-leading order perturbative QCD calculations. The
theoretical predictions agree with the measurement within uncertainties.Comment: 7 pages, 5 figures, submitted to Phys.Lett.
- âŠ