1,100 research outputs found
Limits on excited tau leptons masses from leptonic tau decays
We study the effects induced by excited leptons on the leptonic tau decay at
one loop level. Using a general effective lagrangian approach to describe the
couplings of the excited leptons, we compute their contributions to the
leptonic decays and use the current experimental values of the branching ratios
to put limits on the mass of excited states and the substructure scale.Comment: 10 pages, 6 figures, to be published in Phys. Rev.
Supersymmetry for Fermion Masses
It is proposed that supersymmetry (SUSY) maybe used to understand fermion
mass hierarchies. A family symmetry Z_{3L} is introduced, which is the cyclic
symmetry among the three generation SU(2) doublets. SUSY breaks at a high
energy scale ~ 10^{11} GeV. The electroweak energy scale ~ 100 GeV is
unnaturally small. No additional global symmetry, like the R-parity, is
imposed. The Yukawa couplings and R-parity violating couplings all take their
natural values which are about (10^0-10^{-2}). Under the family symmetry, only
the third generation charged fermions get their masses. This family symmetry is
broken in the soft SUSY breaking terms which result in a hierarchical pattern
of the fermion masses. It turns out that for the charged leptons, the tau mass
is from the Higgs vacuum expectation value (VEV) and the sneutrino VEVs, the
muon mass is due to the sneutrino VEVs, and the electron gains its mass due to
both Z_{3L} and SUSY breaking. The large neutrino mixing are produced with
neutralinos playing the partial role of right-handed neutrinos. |V_{e3}| which
is for nu_e-nu_{tau} mixing is expected to be about 0.1. For the quarks, the
third generation masses are from the Higgs VEVs, the second generation masses
are from quantum corrections, and the down quark mass due to the sneutrino
VEVs. It explains m_c/m_s, m_s/m_e, m_d > m_u and so on. Other aspects of the
model are discussed.Comment: 25 pages, 3 figures, revtex4; neutrino oscillation and many
discussions added, smallness of the electron mass due to supersymmetry
pointed out; v3: numerical errors correcte
Supersymmetric predictions for the inclusive decay
We study the penguin induced transition in the minimal N=1
supersymmetric extension of the Standard Model with radiative breaking of the
electroweak group. We include the effects of one-loop corrections to the Higgs
potential and scalar masses. We show that the present upper and lower
experimental limits on the inclusive decay sharply constrain the parameter
space of the model in a wide range of values. The implications of
the recently advocated relation for the bilinear SUSY soft breaking
parameter in grand unified theories are also analyzed.Comment: 23 pages + 12 figures (hardcopies available on request), LATEX, SISSA
40/94/E
The Landau Pole and decays in the 331 bilepton model
We calculate the decay widths and branching ratios of the extra neutral boson
predicted by the 331 bilepton model in the framework of two
different particle contents. These calculations are performed taken into
account oblique radiative corrections, and Flavor Changing Neutral Currents
(FCNC) under the ansatz of Matsuda as a texture for the quark mass matrices.
Contributions of the order of are obtained in the branching
ratios, and partial widths about one order of magnitude bigger in relation with
other non- and bilepton models are also obtained. A Landau-like pole arise at
3.5 TeV considering the full particle content of the minimal model (MM), where
the exotic sector is considered as a degenerated spectrum at 3 TeV scale. The
Landau pole problem can be avoid at the TeV scales if a new leptonic content
running below the threshold at TeV is implemented as suggested by other
authors.Comment: 20 pages, 5 figures, LaTeX2
Pair Production of the Lightest Chargino via Gluon-Gluon Collisions
The production of the lightest chargino pair from gluon-gluon fusion is
studied in the minimal supersymmetric model(MSSM) at proton-proton colliders.
We find that with the chosen parameters, the production rate of the subprocess
can be over 2.7 femto barn when the chargino is higgsino-like, and the
corresponding total cross section in proton-proton collider can reach 56 femto
barn at the LHC in the CP-conserving MSSM. It shows that this loop mediated
subprocess can be competitive with the standard Drell-Yan subprocess in
proton-proton colliders, especially at the LHC. Furthermore, our calculation
shows it would be possible to extract information about some CP-violating phase
parameters, if we collected enough chargino pair events.Comment: 39 pages, LaTex, 8 figure
Electroweak Corrections to the Charged Higgs Boson Decay into Chargino and Neutralino
The electroweak corrections to the partial widths of the decays including one-loop
diagrams of the third generation quarks and squarks, are investigated within
the Supersymmetric Standard Model. The relative corrections can reach the
values about 10%, therefore they should be taken into account for the precise
experimental measurement at future colliders.Comment: 21 pages, 6 eps figures, 1 Latex fil
Chromomagnetic Dipole Moment of the Top Quark Revisited
We study the complete one-loop contributions to the chromagnetic dipole
moment of the top quark in the Standard Model, two Higgs doublet
models, topcolor assited technicolor models (TC2), 331 models and extended
models with a single extra dimension. We find that the SM predicts
and that the predictions of the other models are also
consitent with the constraints imposed on by low-energy
precision measurements.Comment: 20 pages, 5 figures, Updat
Detection of Neutral MSSM Higgs Bosons at LEP-II and NLC
We study the possibility of detecting the neutral Higgs bosons predicted in
the Minimal Supersymmetric Standard Model (h0, H0, A0), with the reactions e+
e- --> b b h0 (H0, A0), using the helicity formalism. We analyze the region of
parameter space (m_A0-tan beta) where h0(H0, A0) could be detected in the limit
when tan beta is large. The numerical computation is done for the energy which
is expected to be available at LEP-II (sqrt{s} = 200 GeV) and for a possible
Next Linear e+ e- Collider (sqrt{s}=500 GeV).Comment: To be published in Phys.Rev.
Machine Learning in Automated Text Categorization
The automated categorization (or classification) of texts into predefined
categories has witnessed a booming interest in the last ten years, due to the
increased availability of documents in digital form and the ensuing need to
organize them. In the research community the dominant approach to this problem
is based on machine learning techniques: a general inductive process
automatically builds a classifier by learning, from a set of preclassified
documents, the characteristics of the categories. The advantages of this
approach over the knowledge engineering approach (consisting in the manual
definition of a classifier by domain experts) are a very good effectiveness,
considerable savings in terms of expert manpower, and straightforward
portability to different domains. This survey discusses the main approaches to
text categorization that fall within the machine learning paradigm. We will
discuss in detail issues pertaining to three different problems, namely
document representation, classifier construction, and classifier evaluation.Comment: Accepted for publication on ACM Computing Survey
- …