1,025 research outputs found
Inequalities for quantum skew information
We study quantum information inequalities and show that the basic inequality
between the quantum variance and the metric adjusted skew information generates
all the multi-operator matrix inequalities or Robertson type determinant
inequalities studied by a number of authors. We introduce an order relation on
the set of functions representing quantum Fisher information that renders the
set into a lattice with an involution. This order structure generates new
inequalities for the metric adjusted skew informations. In particular, the
Wigner-Yanase skew information is the maximal skew information with respect to
this order structure in the set of Wigner-Yanase-Dyson skew informations.
Key words and phrases: Quantum covariance, metric adjusted skew information,
Robertson-type uncertainty principle, operator monotone function,
Wigner-Yanase-Dyson skew information
Warped Phenomenology of Higher-Derivative Gravity
We examine the phenomenological implications at colliders for the existence
of higher-derivative gravity terms as extensions to the Randall-Sundrum model.
Such terms are expected to arise on rather general grounds, e.g., from string
theory. In 5-d, if we demand that the theory be unitary and ghost free, these
new contributions to the bulk action are uniquely of the Gauss-Bonnet form. We
demonstrate that the usual expectations for the production cross section and
detailed properties of graviton Kaluza-Klein resonances and TeV-scale black
holes can be substantially altered by existence of these additional
contributions. It is shown that measurements at future colliders will be highly
sensitive to the presence of such terms.Comment: 29 pages, 8 figure
Massive scalar states localized on a de Sitter brane
We consider a brane scenario with a massive scalar field in the
five-dimensional bulk. We study the scalar states that are localized on the
brane, which is assumed to be de Sitter. These localized scalar modes are
massive in general, their effective four-dimensional mass depending on the mass
of the five-dimensional scalar field, on the Hubble parameter in the brane and
on the coupling between the brane tension and the bulk scalar field. We then
introduce a purely four-dimensional approach based on an effective potential
for the projection of the scalar field in the brane, and discuss its regime of
validity. Finally, we explore the quasi-localized scalar states, which have a
non-zero width that quantifies their probability of tunneling from the brane
into the bulk.Comment: 14 pages; 5 figure
Second-order corrections to slow-roll inflation in the brane cosmology
We calculate the power spectrum, spectral index, and running spectral index
for the RS-II brane inflation in the high-energy regime using the slow-roll
expansion. There exist several modifications. As an example, we take the
power-law inflation by choosing an inverse power-law potential. When comparing
these with those arisen in the standard inflation, we find that the power
spectrum is enhanced and the spectral index is suppressed, while the running
spectral index becomes zero as in the standard inflation. However, since
second-order corrections are rather small, these could not play a role of
distinguishing between standard and brane inflations.Comment: 6 page
Generation of atom-photon entangled states in atomic Bose-Einstein condensate via electromagnetically induced transparency
In this paper, we present a method to generate continuous-variable-type
entangled states between photons and atoms in atomic Bose-Einstein condensate
(BEC). The proposed method involves an atomic BEC with three internal states, a
weak quantized probe laser and a strong classical coupling laser, which form a
three-level Lambda-shaped BEC system. We consider a situation where the BEC is
in electromagnetically induced transparency (EIT) with the coupling laser being
much stronger than the probe laser. In this case, the upper and intermediate
levels are unpopulated, so that their adiabatic elimination enables an
effective two-mode model involving only the atomic field at the lowest internal
level and the quantized probe laser field. Atom-photon quantum entanglement is
created through laser-atom and inter-atomic interactions, and two-photon
detuning. We show how to generate atom-photon entangled coherent states and
entangled states between photon (atom) coherent states and atom-(photon-)
macroscopic quantum superposition (MQS) states, and between photon-MQS and
atom-MQS states.Comment: 9 pages, 1 figur
Quantum Communication in Rindler Spacetime
A state that an inertial observer in Minkowski space perceives to be the
vacuum will appear to an accelerating observer to be a thermal bath of
radiation. We study the impact of this Davies-Fulling-Unruh noise on
communication, particularly quantum communication from an inertial sender to an
accelerating observer and private communication between two inertial observers
in the presence of an accelerating eavesdropper. In both cases, we establish
compact, tractable formulas for the associated communication capacities
assuming encodings that allow a single excitation in one of a fixed number of
modes per use of the communications channel. Our contributions include a
rigorous presentation of the general theory of the private quantum capacity as
well as a detailed analysis of the structure of these channels, including their
group-theoretic properties and a proof that they are conjugate degradable.
Connections between the Unruh channel and optical amplifiers are also
discussed.Comment: v3: 44 pages, accepted in Communications in Mathematical Physic
Scalar brane backgrounds in higher order curvature gravity
We investigate maximally symmetric brane world solutions with a scalar field.
Five-dimensional bulk gravity is described by a general lagrangian which yields
field equations containing no higher than second order derivatives. This
includes the Gauss-Bonnet combination for the graviton. Stability and
gravitational properties of such solutions are considered, and we particularily
emphasise the modifications induced by the higher order terms. In particular it
is shown that higher curvature corrections to Einstein theory can give rise to
instabilities in brane world solutions. A method for analytically obtaining the
general solution for such actions is outlined. Genericaly, the requirement of a
finite volume element together with the absence of a naked singularity in the
bulk imposes fine-tuning of the brane tension. A model with a moduli scalar
field is analysed in detail and we address questions of instability and
non-singular self-tuning solutions. In particular, we discuss a case with a
normalisable zero mode but infinite volume element.Comment: published versio
Some general properties of the renormalized stress-energy tensor for static quantum states on (n+1)-dimensional spherically symmetric black holes
We study the renormalized stress-energy tensor (RSET) for static quantum
states on (n+1)-dimensional, static, spherically symmetric black holes. By
solving the conservation equations, we are able to write the stress-energy
tensor in terms of a single unknown function of the radial co-ordinate, plus
two arbitrary constants. Conditions for the stress-energy tensor to be regular
at event horizons (including the extremal and ``ultra-extremal'' cases) are
then derived using generalized Kruskal-like co-ordinates. These results should
be useful for future calculations of the RSET for static quantum states on
spherically symmetric black hole geometries in any number of space-time
dimensions.Comment: 9 pages, no figures, RevTeX4, references added, accepted for
publication in General Relativity and Gravitatio
Nariai, Bertotti-Robinson and anti-Nariai solutions in higher dimensions
We find all the higher dimensional solutions of the Einstein-Maxwell theory
that are the topological product of two manifolds of constant curvature. These
solutions include the higher dimensional Nariai, Bertotti-Robinson and
anti-Nariai solutions, and the anti-de Sitter Bertotti-Robinson solutions with
toroidal and hyperbolic topology (Plebanski-Hacyan solutions). We give explicit
results for any dimension D>3. These solutions are generated from the
appropriate extremal limits of the higher dimensional near-extreme black holes
in a de Sitter, and anti-de Sitter backgrounds. Thus, we also find the mass and
the charge parameters of the higher dimensional extreme black holes as a
function of the radius of the degenerate horizon.Comment: 10 pages, 11 figures, RevTeX4. References added. Published versio
Rapid decline in estimated glomerular filtration rate in sickle cell anemia: Results of a multicenter pooled analysis
Chronic kidney disease (CKD), typically defined as kidney damage or decreased kidney function for 3 or more months, is common in sickle cell disease (SCD). Increasing evidence suggests that the glomerulopathy of SCD is progressive. CKD is associated with increased mortality in SCD. Based on single center studies, we previously reported on the high prevalence of rapid decline in kidney function, defined as estimated glomerular filtration rate (eGFR) loss >3.0 mL/min/1.73 m2per year, in SCD. In the present study, we further examine rapid eGFR decline in sickle cell anemia, using a pooled analysis of patients to better characterize factors associated with such decline and its association with mortality
- …