249 research outputs found
CQESTR Simulation of Management Practice Effects on Long-Term Soil Organic Carbon
Management of soil organic matter (SOM) is important for soil productivity and responsible utilization of crop residues for additional uses. CQESTR, pronounced “sequester,” a contraction of “C sequestration” (meaning C storage), is a C balance model that relates organic residue additions, crop management, and soil tillage to SOM accretion or loss. Our objective was to simulate SOM changes in agricultural soils under a range of climate and management systems using the CQESTR model. Four long-term experiments (Champaign, IL, \u3e100 yr; Columbia, MO, \u3e100 yr; Lincoln, NE, 20 yr; Sidney, NE, 20 yr) in the United States under various crop rotations, tillage practices, organic amendments, and crop residue removal treatments were selected for their documented history of the long-term effects of management practice on SOM dynamics. CQESTR successfully simulated a substantial decline in SOM with 50 yr of crop residue removal under various rotations at Columbia and Champaign. The increase in SOM following addition of manure was simulated well; however, the model underestimated SOM for a fertilized treatment at Columbia. Predicted and observed values from the four sites were signifi cantly related (r2 = 0.94, n = 113, P \u3c 0.001), with slope not signifi cantly different from 1. Given the high correlation of simulated and observed SOM changes, CQESTR can be used as a reliable tool to predict SOM changes from management practices and offers the potential for estimating soil C storage required for C credits. It can also be an important tool to estimate the impacts of crop residue removal for bioenergy production on SOM level and soil production capacity
Implications of the Top Quark Mass Measurement for the CKM Parameters, and CP Asymmetries
Motivated by the recent determination of the top quark mass by the CDF
collaboration, \mt =174 \pm 10 ^{+13}_{-12} GeV, we review and update the
constraints on the parameters of the quark flavour mixing matrix in
the standard model. In performing our fits, we use inputs from the measurements
of the following quantities: (i) \abseps, the CP-violating parameter in
decays, (ii) \delmd, the mass difference due to the \bdbdbar\ mixing, (iii)
the matrix elements \absvcb and \absvub, and (iv) -hadron lifetimes. We
find that the allowed region of the unitarity triangle is very large, mostly
due to theoretical uncertainties. (This emphasizes the importance of
measurements of CP-violating rate asymmetries in the system.) Nevertheless,
the present data do somewhat restrict the allowed values of the coupling
constant product and the renormalization-scale
invariant bag constant . With the updated CKM matrix we present the
currently-allowed range of the ratio , as well as
the standard model predictions for the \bsbsbar\ mixing parameter \xs and the
quantities , and , which characterize
the CP-asymmetries in -decays. The ALEPH collaboration has recently reported
a significant improvement on the lower limit on the \bs-\bsb mass
difference, (95\% C.L.). This has interesting
consequences for the CKM parameters which are also worked out.
NOTE: this is a revised and updated version of our previous paper.Comment: LaTeX, 27 pages, 16 uuencoded figures (enclosed), CERN-TH.7398/94,
UdeM-GPP-TH-94-0
Phase Transition in Conformally Induced Gravity with Torsion
We have considered the quantum behavior of a conformally induced gravity in
the minimal Riemann-Cartan space. The regularized one-loop effective potential
considering the quantum fluctuations of the dilaton and the torsion fields in
the Coleman-Weinberg sector gives a sensible phase transition for an
inflationary phase in De Sitter space. For this effective potential, we have
analyzed the semi-classical equation of motion of the dilaton field in the
slow-rolling regime.Comment: 7pages, no figur
Charged Higgs Effects on Exclusive Semi-tauonic \bbox{B} Decays
We study effects of charged Higgs boson exchange in the semileptonic
decays . Both branching ratio and
polarization are examined. We use the recent experimental data on
semileptonic decays and the heavy quark effective theory in order to reduce
theoretical uncertainty in the hadronic form factors. Theoretical uncertainty
in the branching ratio is found to be rather small and that in the
polarization is almost negligible. Their measurements will give nontrivial
constraints on the charged Higgs sector.Comment: 14 pages of LaTeX (using revtex, epsf) text and 5 figures, A
PostScript file of the paper including the figures available at
ftp://ftp.kek.jp/kek/preprints/TH/TH-422/TH-422.ps.g
Towards a Naturally Small Cosmological Constant from Branes in 6D Supergravity
We investigate the possibility of self-tuning of the effective 4D
cosmological constant in 6D supergravity, to see whether it could naturally be
of order 1/r^4 when compactified on two dimensions having Kaluza-Klein masses
of order 1/r. In the models we examine supersymmetry is broken by the presence
of non-supersymmetric 3-branes (on one of which we live). If r were
sub-millimeter in size, such a cosmological constant could describe the
recently-discovered dark energy. A successful self-tuning mechanism would
therefore predict a connection between the observed size of the cosmological
constant, and potentially observable effects in sub-millimeter tests of gravity
and at the Large Hadron Collider. We do find self tuning inasmuch as 3-branes
can quite generically remain classically flat regardless of the size of their
tensions, due to an automatic cancellation with the curvature and dilaton of
the transverse two dimensions. We argue that in some circumstances
six-dimensional supersymmetry might help suppress quantum corrections to this
cancellation down to the bulk supersymmetry-breaking scale, which is of order
1/r. We finally examine an explicit realization of the mechanism, in which
3-branes are inserted into an anomaly-free version of Salam-Sezgin gauged 6D
supergravity compactified on a 2-sphere with nonzero magnetic flux. This
realization is only partially successful due to a topological constraint which
relates bulk couplings to the brane tension, although we give arguments why
these relations may be stable against quantum corrections.Comment: 31 pages, 1 figure. Uses JHEP class. Expanded discussions in
Introduction, Section 3.2 (Quantum Corrections) and Section 4.2 (Topological
Constraint). Note added on subsequent related articles. Results unchange
Electronic states and optical properties of GaAs/AlAs and GaAs/vacuum superlattices by the linear combination of bulk bands method
The linear combination of bulk bands method recently introduced by Wang,
Franceschetti and Zunger [Phys. Rev. Lett.78, 2819 (1997)] is applied to a
calculation of energy bands and optical constants of (GaAs)/(AlAs) and
(GaAs)/(vacuum) (001) superlattices with n ranging from 4 to 20.
Empirical pseudopotentials are used for the calculation of the bulk energy
bands. Quantum-confined induced shifts of critical point energies are
calculated and are found to be larger for the GaAs/vacuum system. The
peak in the absorption spectra has a blue shift and splits into two peaks for
decreasing superlattice period; the transition instead is found to be
split for large-period GaAs/AlAs superlattices. The band contribution to linear
birefringence of GaAs/AlAs superlattices is calculated and compared with recent
experimental results of Sirenko et al. [Phys. Rev. B 60, 8253 (1999)]. The
frequency-dependent part reproduces the observed increase with decreasing
superlattice period, while the calculated zero-frequency birefringence does not
account for the experimental results and points to the importance of
local-field effects.Comment: 10 pages, 11 .eps figures, 1 tabl
Scale of Homogeneity of the Universe from WMAP
We review the physics of the Grishchuck-Zel'dovich effect which describes the
impact of large amplitude, super-horizon gravitational field fluctuations on
the Cosmic Microwave Background anisotropy power spectrum. Using the latest
determination of the spectrum by WMAP, we infer a lower limit on the present
length-scale of such fluctuations of 3927 times the cosmological particle
horizon (at the 95% confidence level).Comment: 3 pages, 1 figure. Submitted to Phys. Rev. D. Brief Repor
Challenging SO(10) SUSY GUTs with family symmetries through FCNC processes
We perform a detailed analysis of the SO(10) SUSY GUT model with D3 family
symmetry of Dermisek and Raby (DR). The model is specified in terms of 24
parameters and predicts, as a function of them, the whole MSSM set of
parameters at low energy scales. Concerning the SM subset of such parameters,
the model is able to give a satisfactory description of the quark and lepton
masses, of the PMNS matrix and of the CKM matrix. We perform a global fit to
the model, including flavour changing neutral current (FCNC) processes Bs -->
mu+ mu-, B --> Xs gamma, B --> Xs l+ l- and the B(d,s) - bar B(d,s) mass
differences Delta M(d,s) as well as the flavour changing (FC) process B+ -->
tau+ nu. These observables provide at present the most sensitive probe of the
SUSY mass spectrum and couplings predicted by the model. Our analysis
demonstrates that the simultaneous description of the FC observables in
question represents a serious challenge for the DR model, unless the masses of
the scalars are moved to regions which are problematic from the point of view
of naturalness and probably beyond the reach of the LHC. We emphasize that this
problem could be a general feature of SUSY GUT models with third generation
Yukawa unification and weak-scale minimal flavour violation.Comment: 1 + 37 pages, 5 figures, 11 tables. v3: minor typos fixed. Matches
JHEP published versio
Sustainable change: long-term efforts toward developing a learning organization
Globalization and intensified competition require organizations to change and adapt to dynamic environments in order to stay competitive. This article describes a longitudinal action research study supporting the strategic change of a trading company. The strategic change was accompanied by planned changes in organizational structures and processes, management systems, emerging changes in leadership, and organization members’ attitudes and behaviors, and it was supported by management development activities. Longitudinal data over a 4-year period including participant observation and interviews reveal that a systemic approach, a learning and becoming perspective toward change, trust, an appropriate role perception, and the specific use of management instruments contribute to sustained change that resulted in performance improvements and a move toward a learning organization. We conclude with implications for strategic change and suggestions for further research in this area
Observation of B+ -> K+ eta gamma
We report measurements of radiative B decays with K eta gamma final states,
using a data sample of 253 /fb recorded at the Upsilon(4S) resonance with the
Belle detector at the KEKB e+e- storage ring. We observe B+ -> K+ eta gamma for
the first time with a branching fraction of (8.4 +- 1.5(stat) +1.2 -0.9(syst))
X 10^{-6} for M(Keta) K0 eta gamma.
We also search for B -> K3*(1780) gamma.Comment: 12 pages, 5 figures, accepted by Phys. Lett.
- …