15 research outputs found
Fractional Dynamics of Relativistic Particle
Fractional dynamics of relativistic particle is discussed. Derivatives of
fractional orders with respect to proper time describe long-term memory effects
that correspond to intrinsic dissipative processes. Relativistic particle
subjected to a non-potential four-force is considered as a nonholonomic system.
The nonholonomic constraint in four-dimensional space-time represents the
relativistic invariance by the equation for four-velocity u_{\mu}
u^{\mu}+c^2=0, where c is a speed of light in vacuum. In the general case, the
fractional dynamics of relativistic particle is described as non-Hamiltonian
and dissipative. Conditions for fractional relativistic particle to be a
Hamiltonian system are considered
Liposomes in Biology and Medicine
Drug delivery systems (DDS) have become important tools for the specific delivery of a large number of drug molecules. Since their discovery in the 1960s liposomes were recognized as models to study biological membranes and as versatile DDS of both hydrophilic and lipophilic molecules. Liposomes--nanosized unilamellar phospholipid bilayer vesicles--undoubtedly represent the most extensively studied and advanced drug delivery vehicles. After a long period of research and development efforts, liposome-formulated drugs have now entered the clinics to treat cancer and systemic or local fungal infections, mainly because they are biologically inert and biocompatible and practically do not cause unwanted toxic or antigenic reactions. A novel, up-coming and promising therapy approach for the treatment of solid tumors is the depletion of macrophages, particularly tumor associated macrophages with bisphosphonate-containing liposomes. In the advent of the use of genetic material as therapeutic molecules the development of delivery systems to target such novel drug molecules to cells or to target organs becomes increasingly important. Liposomes, in particular lipid-DNA complexes termed lipoplexes, compete successfully with viral gene transfection systems in this field of application. Future DDS will mostly be based on protein, peptide and DNA therapeutics and their next generation analogs and derivatives. Due to their versatility and vast body of known properties liposome-based formulations will continue to occupy a leading role among the large selection of emerging DDS