6 research outputs found

    Conductivity Due to Classical Phase Fluctuations in a Model For High-T_c Superconductors

    Full text link
    We consider the real part of the conductivity, \sigma_1(\omega), arising from classical phase fluctuations in a model for high-T_c superconductors. We show that the frequency integral of that conductivity, \int_0^\infty \sigma_1 d\omega, is non-zero below the superconducting transition temperature TcT_c, provided there is some quenched disorder in the system. Furthermore, for a fixed amount of quenched disorder, this integral at low temperatures is proportional to the zero-temperature superfluid density, in agreement with experiment. We calculate \sigma_1(\omega) explicitly for a model of overdamped phase fluctuations.Comment: 4pages, 2figures, submitted to Phys.Rev.

    Experimental implications of quantum phase fluctuations in layered superconductors

    Full text link
    I study the effect of quantum and thermal phase fluctuations on the in-plane and c-axis superfluid stiffness of layered d-wave superconductors. First, I show that quantum phase fluctuations in the superconductor can be damped in the presence of external screening of Coulomb interactions, and suggest an experiment to test the importance of these fluctuations, by placing a metal in close proximity to the superconductor to induce such screening. Second, I show that a combination of quantum phase fluctuations and the linear temperature dependence of the in-plane superfluid stiffness leads to a linear temperature dependence of the c-axis penetration depth, below a temperature scale determined by the magnitude of in-plane dissipation.Comment: 6 pgs, 1 figure, minor changes in comparison with c-axis expt, final published versio
    corecore