315 research outputs found
Evolution of Gluon Spin in the Nucleon
We examine the evolution of gluon polarization in polarized nucleons.
As is well known, the evolution of is negligible for
typical momentum transfer variations found in experimental deep inelastic
scattering. As increases, however, the leading nonzero term in the
evolution equation for the singlet first moment reduces the magnitude of the
gluon spin. At low the term can vanish, and
ultimately become negative. Thus, low energy model calculations yielding
negative are not necessarily in conflict with experimental evidence
for positive gluon polarization at high .Comment: ReVTeX + psfig, 7 pages, 3 figures (postscript), accepted in Physics
Letters B, ([email protected]
Parity Violating Measurements of Neutron Densities
Parity violating electron nucleus scattering is a clean and powerful tool for
measuring the spatial distributions of neutrons in nuclei with unprecedented
accuracy. Parity violation arises from the interference of electromagnetic and
weak neutral amplitudes, and the of the Standard Model couples primarily
to neutrons at low . The data can be interpreted with as much confidence
as electromagnetic scattering. After briefly reviewing the present theoretical
and experimental knowledge of neutron densities, we discuss possible parity
violation measurements, their theoretical interpretation, and applications. The
experiments are feasible at existing facilities. We show that theoretical
corrections are either small or well understood, which makes the interpretation
clean. The quantitative relationship to atomic parity nonconservation
observables is examined, and we show that the electron scattering asymmetries
can be directly applied to atomic PNC because the observables have
approximately the same dependence on nuclear shape.Comment: 38 pages, 7 ps figures, very minor changes, submitted to Phys. Rev.
Relativistic mean-field study of neutron-rich nuclei
A relativistic mean-field model is used to study the ground-state properties
of neutron-rich nuclei. Nonlinear isoscalar-isovector terms, unconstrained by
present day phenomenology, are added to the model Lagrangian in order to modify
the poorly known density dependence of the symmetry energy. These new terms
soften the symmetry energy and reshape the theoretical neutron drip line
without compromising the agreement with existing ground-state information. A
strong correlation between the neutron radius of 208Pb and the binding energy
of valence orbitals is found: the smaller the neutron radius of 208Pb, the
weaker the binding energy of the last occupied neutron orbital. Thus, models
with the softest symmetry energy are the first ones to drip neutrons. Further,
in anticipation of the upcoming one-percent measurement of the neutron radius
of 208Pb at the Thomas Jefferson Laboratory, a close relationship between the
neutron radius of 208Pb and neutron radii of elements of relevance to atomic
parity-violating experiments is established.Comment: 14 pages, 5 figure
Nuclear Skins and Halos in the Mean-Field Theory
Nuclei with large neutron-to-proton ratios have neutron skins, which manifest
themselves in an excess of neutrons at distances greater than the radius of the
proton distribution. In addition, some drip-line nuclei develop very extended
halo structures. The neutron halo is a threshold effect; it appears when the
valence neutrons occupy weakly bound orbits. In this study, nuclear skins and
halos are analyzed within the self-consistent Skyrme-Hartree-Fock-Bogoliubov
and relativistic Hartree-Bogoliubov theories for spherical shapes. It is
demonstrated that skins, halos, and surface thickness can be analyzed in a
model-independent way in terms of nucleonic density form factors. Such an
analysis allows for defining a quantitative measure of the halo size. The
systematic behavior of skins, halos, and surface thickness in even-even nuclei
is discussed.Comment: 22 RevTeX pages, 22 EPS figures included, submitted to Physical
Review
Combined effect of coherent Z exchange and the hyperfine interaction in atomic PNC
The nuclear spin-dependent parity nonconserving (PNC) interaction arising
from a combination of the hyperfine interaction and the coherent,
spin-independent, PNC interaction from Z exchange is evaluated using many-body
perturbation theory. For the 6s-7s transition in 133Cs, we obtain a result that
is about 40% smaller than that found previously by Bouchiat and Piketty [Phys.
Lett. B 269, 195 (1991)]. Applying this result to 133Cs, leads to an increase
in the experimental value of nuclear anapole moment and exacerbates differences
between constraints on PNC meson coupling constants obtained from the Cs
anapole moment and those obtained from other nuclear parity violating
experiments. Nuclear spin-dependent PNC dipole matrix elements, including
contributions from the combined weak-hyperfine interaction, are also given for
the 7s-8s transition in 211Fr and for transitions between ground-state
hyperfine levels in K, Rb, Cs, Ba+, Au, Tl, Fr, and Ra+.Comment: Revtex4 preprint 19 pages 4 table
The Weak Charge of the Proton and New Physics
We address the physics implications of a precision determination of the weak
charge of the proton, QWP, from a parity violating elastic electron proton
scattering experiment to be performed at the Jefferson Laboratory. We present
the Standard Model (SM) expression for QWP including one-loop radiative
corrections, and discuss in detail the theoretical uncertainties and missing
higher order QCD corrections. Owing to a fortuitous cancellation, the value of
QWP is suppressed in the SM, making it a unique place to look for physics
beyond the SM. Examples include extra neutral gauge bosons, supersymmetry, and
leptoquarks. We argue that a QWP measurement will provide an important
complement to both high energy collider experiments and other low energy
electroweak measurements. The anticipated experimental precision requires the
knowledge of the order alpha_s corrections to the pure electroweak box
contributions. We compute these contributions for QWP, as well as for the weak
charges of heavy elements as determined from atomic parity violation.Comment: 22 pages of LaTeX, 5 figure
High-precision determination of transition amplitudes of principal transitions in Cs from van der Waals coefficient C_6
A method for determination of atomic dipole matrix elements of principal
transitions from the value of dispersion coefficient C_6 of molecular
potentials correlating to two ground-state atoms is proposed. The method is
illustrated on atomic Cs using C_6 deduced from high-resolution Feshbach
spectroscopy. The following reduced matrix elements are determined < 6S_{1/2}
|| D || 6P_{1/2} > =4.5028(60) |e| a0 and
=6.3373(84) |e| a0 (a0= 0.529177 \times 10^{-8} cm.) These matrix elements are
consistent with the results of the most accurate direct lifetime measurements
and have a similar uncertainty. It is argued that the uncertainty can be
considerably reduced as the coefficient C_6 is constrained further.Comment: 4 pages; 3 fig
Reevaluation of the role of nuclear uncertainties in experiments on atomic parity violation with isotopic chains
In light of new data on neutron distributions from experiments with
antiprotonic atoms [ Trzcinska {\it et al.}, Phys. Rev. Lett. 87, 082501
(2001)], we reexamine the role of nuclear-structure uncertainties in the
interpretation of measurements of parity violation in atoms using chains of
isotopes of the same element. With these new nuclear data, we find an
improvement in the sensitivity of isotopic chain measurements to ``new
physics'' beyond the standard model. We compare possible constraints on ``new
physics'' with the most accurate to date single-isotope probe of parity
violation in the Cs atom. We conclude that presently isotopic chain experiments
employing atoms with nuclear charges Z < 50 may result in more accurate tests
of the weak interaction.Comment: 6 pages, 1 fig., submitted to Phys. Rev.
Preliminary estimates of the abundance and fidelity of dolphins associating with a demersal trawl fishery
The incidental capture of wildlife in fishing gear presents a global conservation challenge. As a baseline to inform assessments of the impact of bycatch on bottlenose dolphins (Tursiops truncatus) interacting with an Australian trawl fishery, we conducted an aerial survey to estimate dolphin abundance across the fishery. Concurrently, we carried out boat-based dolphin photo-identification to assess short-term fidelity to foraging around trawlers, and used photographic and genetic data to infer longer-term fidelity to the fishery. We estimated abundance at ≈ 2,300 dolphins (95% CI = 1,247-4,214) over the ≈ 25,880-km2 fishery. Mark-recapture estimates yielded 226 (SE = 38.5) dolphins associating with one trawler and some individuals photographed up to seven times over 12 capture periods. Moreover, photographic and genetic re-sampling over three years confirmed that some individuals show long-term fidelity to trawler-associated foraging. Our study presents the first abundance estimate for any Australian pelagic dolphin community and documents individuals associating with trawlers over days, months and years. Without trend data or correction factors for dolphin availability, the impact of bycatch on this dolphin population's conservation status remains unknown. These results should be taken into account by management agencies assessing the impact of fisheries-related mortality on this protected species
- …
