285 research outputs found

    Couplings of N=1 chiral spinor multiplets

    Full text link
    We derive the action for chiral spinor multiplets coupled to vector and scalar multiplets. We give the component form of the action, which contains gauge invariant mass terms for the antisymmetric tensors in the spinor superfield and additional Green-Schwarz couplings to vector fields. We observe that supersymmetry provides mass terms for the scalars in the spinor multiplet which do not arise from eliminating an auxiliary field. We construct the dual action by explicitly performing the duality transformations in superspace and give its component form.Comment: 17 pages, v2 small change

    Angels and Saints, God\u27s Holy Throng

    Get PDF
    A hymn about welcoming someone into heave

    On massive tensor multiplets

    Full text link
    Massive tensor multiplets have recently been scrutinized in hep-th/0410051 and hep-th/0410149, as they appear in orientifold compactifications of type IIB string theory. Here we formulate several dually equivalent models for massive N = 1, N=2 tensor multiplets in four space-time dimensions. In the N = 2 case, we employ harmonic and projective superspace techniques.Comment: 17 pages, LaTeX, no figures; V2: reference adde

    Investigating the bottom free surface nappe (ogee profile) across a sharp-crested weir caused by the flow in an asymmetrical approach channel

    Get PDF
    The shape of an ogee spillway is based on the shape of the lower nappe of water flowing over an aerated sharp-crested weir. At the design discharge, this shape minimises the possibility of sub-atmospheric pressure occurring on the spillway and maximises the discharge across the spillway. The formulae that are currently in use to approximate the ogee profile consider only two-dimensional flow parameters, being the depth of flow over the spillway crest, the inclination of the upstream wall face, and the pool depth upstream of the spillway. The current formulae for the ogee shape, does not consider the influence of three-dimensional flow. The most significant three-dimensional flow parameters that could affect the shape of the lower nappe are the flow velocity distribution upstream of the spillway, the orientation or angle of the water approaching the spillway, the asymmetrical cross-section of the approach channel, and the curvature of the dam wall. This paper reflects the influence of asymmetrical flow in the approach channel. The investigation was based on a physical model constructed at the Department of Water and Sanitation (DWS). The inclination of the model’s sidewalls of the upstream approach channel was varied to cause a change in the symmetricity, while the lower nappe profile was routinely measured. It was found that the flow in the asymmetrical approach channel caused a variation from the theoretical estimated ogee profile. A comparison between the measured nappe profile and the currently used formulae was investigated. It can be concluded that the symmetricity of the approach channel influences the shape of the bottom nappe, which differs from the shape as proposed by the current ogee formulae. It is recommended that three-dimensional flow should be examined when designing an ogee spillway.http://www.journals.co.za/ej/ejour_civileng.htmlam201

    Investigating the bottom free surface nappe (ogee profile) across a sharp-crested weir caused by the flow in an asymmetrical approach channel

    Get PDF
    The shape of an ogee spillway is based on the shape of the lower nappe of water flowing over an aerated sharp-crested weir. At the design discharge, this shape minimises the possibility of sub-atmospheric pressure occurring on the spillway and maximises the discharge across the spillway. The formulae that are currently in use to approximate the ogee profile consider only two-dimensional flow parameters, being the depth of flow over the spillway crest, the inclination of the upstream wall face, and the pool depth upstream of the spillway. The current formulae for the ogee shape, does not consider the influence of three-dimensional flow. The most significant three-dimensional flow parameters that could affect the shape of the lower nappe are the flow velocity distribution upstream of the spillway, the orientation or angle of the water approaching the spillway, the asymmetrical cross-section of the approach channel, and the curvature of the dam wall. This paper reflects the influence of asymmetrical flow in the approach channel. The investigation was based on a physical model constructed at the Department of Water and Sanitation (DWS). The inclination of the model’s sidewalls of the upstream approach channel was varied to cause a change in the symmetricity, while the lower nappe profile was routinely measured. It was found that the flow in the asymmetrical approach channel caused a variation from the theoretical estimated ogee profile. A comparison between the measured nappe profile and the currently used formulae was investigated. It can be concluded that the symmetricity of the approach channel influences the shape of the bottom nappe, which differs from the shape as proposed by the current ogee formulae. It is recommended that three-dimensional flow should be examined when designing an ogee spillway.http://www.journals.co.za/ej/ejour_civileng.htmlam201

    Energy radiation of moving cracks

    Full text link
    The energy radiated by moving cracks in a discrete background is analyzed. The energy flow through a given surface is expressed in terms of a generalized Poynting vector. The velocity of the crack is determined by the radiation by the crack tip. The radiation becomes more isotropic as the crack velocity approaches the instability threshold.Comment: 7 pages, embedded figure

    Taxonomy, nomenclature and phylogeny of three cladosporium-like hyphomycetes, Sorocybe resinae, Seifertia azaleae and the Hormoconis anamorph of Amorphotheca resinae

    Get PDF
    Using morphological characters, cultural characters, large subunit and internal transcribed spacer rDNA (ITS) sequences, and provisions of the International Code of Botanical Nomenclature, this paper attempts to resolve the taxonomic and nomenclatural confusion surrounding three species of cladosporium-like hyphomycetes. The type specimen of Hormodendrum resinae, the basis for the use of the epithet resinae for the creosote fungus {either as Hormoconis resinae or Cladosporium resinae) represents the mononematous synanamorph of the synnematous, resinicolous fungus Sorocybe resinae. The phylogenetic relationships of the creosote fungus, which is the anamorph of Amorphotheca resinae, are with the family Myxotrichaceae, whereas S. resinae is related to Capronia (Chaetothyriales, Herpotrichiellaceae). Our data support the segregation of Pycnostysanus azaleae, the cause of bud blast of rhododendrons, in the recently described anamorph genus Seifertia, distinct from Sorocybe; this species is related to the Dothideomycetes but its exact phylogenetic placement is uncertain. To formally stabilize the name of the anamorph of the creosote fungus, conservation of Hormodendrum resinae with a new holotype should be considered. The paraphyly of the family Myxotrichaceae with the Amorphothecaceae suggested by ITS sequences should be confirmed with additional genes

    Socioeconomic benefit to individuals of achieving 2020 targets for four neglected tropical diseases controlled/eliminated by innovative and intensified disease management

    Get PDF
    __Background__ The control or elimination of neglected tropical diseases (NTDs) has targets defined by the WHO for 2020, reinforced by the 2012 London Declaration. We estimated the economic impact to individuals of meeting these targets for human African trypanosomiasis, leprosy, visceral leishmaniasis and Chagas disease, NTDs controlled or eliminated by innovative and intensified disease management (IDM). __Methods__ A systematic literature review identified information on productivity loss and out-of-pocket payments (OPPs) related to these NTDs, which were combined with projections of the number of people suffering from each NTD, country and year for 2011±2020 and 2021±2030. The ideal scenario in which the WHO's 2020 targets are met was compared with a counterfactual scenario that assumed the situation of 1990 stayed unaltered. Economic benefit equaled the difference between the two scenarios. Values are reported in 2005 US, purchasing power parity-adjusted, discounted at 3% per annum from 2010. Probabilistic sensitivity analyses were used to quantify the degree of uncertainty around the base-case impact estimate. __Results__ The total global productivity gained for the four IDM-NTDs was I 23.1 (I15.9±I 15.9 ±I 34.0) billion in 2011±2020 and I35.9(I 35.9 (I 25.0 ±I51.9)billionin2021±2030(2.5thand97.5thpercentilesinbrackets),correspondingtoUS 51.9) billion in 2021±2030 (2.5th and 97.5th percentiles in brackets), corresponding to US 10.7 billion (US7.4±US 7.4 ±US 15.7) and US16.6billion(US 16.6 billion (US 11.6 ±US24.0).ReductioninOPPswasI 24.0). Reduction in OPPs was I 14 billion (US6.7billion)andI 6.7 billion) and I 18 billion (US$ 10.4 billion) for the same periods. __Conclusions__ We faced important limitations to our work, such as finding no OPPs for leprosy. We had to combine limited data from various sources, heterogeneous background, and of variable quality. Nevertheless, based on conservative assumptions and subsequent uncertainty analyses, we estimate that the benefits of achieving the targets are considerable. Under plausible scenarios, the economic benefits far exceed the necessary investments by endemic country governments and their development partners. Given the higher frequency of NTDs among the poorest households, these investments represent good value for money in the effort to improve well-being, distribute the world's prosperity more equitably and reduce inequity

    The Socioeconomic Benefit to Individuals of Achieving the 2020 Targets for Five Preventive Chemotherapy Neglected Tropical Diseases

    Get PDF
    Background: Lymphatic filariasis (LF), onchocerciasis, schistosomiasis, soil-transmitted helminths (STH) and trachoma represent the five most prevalent neglected tropical diseases (NTDs). They can be controlled or eliminated by means of safe and cost-effective interventions delivered through programs of Mass Drug Administration (MDA)—also named Preventive Chemotherapy (PCT). The WHO defined targets for NTD control/elimination by 2020, reinforced by the 2012 London Declaration, which, if achieved, would result in dramatic health gains. We estimated the potential economic benefit of achieving these targets, focusing specifically on productivity and out-of-pocket payments. Methods: Productivity loss was calculated by combining disease frequency with productivity loss from the disease, from the perspective of affected individuals. Productivity gain was calculated by deducting the total loss expected in the target achievement scenario from the loss in a counterfactual scenario where it was assumed the pre-intervention situation in 1990 regarding NTDs would continue unabated until 2030. Economic benefits from out-of-pocket payments (OPPs) were calculated similarly. Benefits are reported in 2005 US(purchasingpowerparityadjustedanddiscountedat3Results:TheeconomicbenefitfromproductivitygainwasestimatedtobeI (purchasing power parity-adjusted and discounted at 3% per annum from 2010). Sensitivity analyses were used to assess the influence of changes in input parameters. Results: The economic benefit from productivity gain was estimated to be I251 billion in 2011–2020 and I313billionin20212030,considerablygreaterthanthetotalOPPsavertedofI313 billion in 2021–2030, considerably greater than the total OPPs averted of I0.72 billion and I0.96billioninthesameperiods.ThenetbenefitisexpectedtobeUS0.96 billion in the same periods. The net benefit is expected to be US 27.4 and US$ 42.8 for every dollar invested during the same periods. Impact varies between NTDs and regions, since it is determined by disease prevalence and extent of disease-related p

    First Observation of Coherent π0\pi^0 Production in Neutrino Nucleus Interactions with Eν<E_{\nu}< 2 GeV

    Get PDF
    The MiniBooNE experiment at Fermilab has amassed the largest sample to date of π0\pi^0s produced in neutral current (NC) neutrino-nucleus interactions at low energy. This paper reports a measurement of the momentum distribution of π0\pi^0s produced in mineral oil (CH2_2) and the first observation of coherent π0\pi^0 production below 2 GeV. In the forward direction, the yield of events observed above the expectation for resonant production is attributed primarily to coherent production off carbon, but may also include a small contribution from diffractive production on hydrogen. Integrated over the MiniBooNE neutrino flux, the sum of the NC coherent and diffractive modes is found to be (19.5 ±\pm1.1 (stat) ±\pm2.5 (sys))% of all exclusive NC π0\pi^0 production at MiniBooNE. These measurements are of immediate utility because they quantify an important background to MiniBooNE's search for νμνe\nu_{\mu} \to \nu_e oscillations.Comment: Submitted to Phys. Lett.
    corecore