20 research outputs found

    Investigating the correlation between deactivation and the carbon deposited on the surface of Ni/Al2O3 and Ni/La2O3-Al2O3 catalysts during the biogas reforming reaction

    Get PDF
    Ni/Al2O3 and Ni/La2O-Al2O3 catalysts were investigated for the biogas reforming reaction using CH4/CO2 mixtures with minimal dilution. Stability tests at various reaction temperatures were conducted and TGA/DTG, Raman, STEM-HAADF, HR-TEM, XPS techniques were used to characterize the spent samples. Graphitized carbon allotrope structures, carbon nanotubes (CNTs) and amorphous carbon were formed on all samples. Metallic Ni0 was recorded for all (XPS), whereas a strong peak corresponding to Ni2O3/NiAl2O4, was observed for the Ni/Al sample (650–750 °C). Stability tests confirm that the Ni/LaAl catalyst deactivates at a more gradual rate and is more active and selective in comparison to the Ni/Al for all temperatures. The Ni/LaAl exhibits good durability in terms of conversion and selectivity, whereas the Ni/Al gradually loses its activity in CH4 and CO2 conversion, with a concomitant decrease of the H2 and CO yield. It can be concluded that doping Al2O3 with La2O3 stabilizes the catalyst by (a) maintaining the Ni0 phase during the reaction, due to higher dispersion and stronger active phase-support interactions, (b) leading to a less graphitic and more defective type of deposited carbon and (c) facilitating the deposited carbon gasification due to the enhanced CO2 adsorption on its increased surface basic sites

    A comparison of reactive plasma pre-treatments on PET substrates by Cu and Ti pulsed-DC and HIPIMS discharges

    Get PDF
    PET web samples have been treated by magnetically enhanced glow discharges powered using either medium frequency pulse direct current (p-DC) or low frequency high power pulse (HIPIMS) sources. The plasma pre-treatment processes were carried out in an Ar–O2 atmosphere using either Cu or Ti sputter targets. XPS, AFM and sessile drop water contact angle measurements have been employed to examine changes in surface chemistry and morphology for different pre-treatment process parameters. Deposition of metal oxide onto the PET surface is observed as a result of the sputter magnetron-based glow discharge web treatment. Using the Cu target, both the p-DC and HIPIMS processes result in the formation of a thin CuO layer (with a thickness between 1 and 11 nm) being deposited onto the PET surface. Employing the Ti target, both p-DC and HIPIMS processes give rise to a much lower concentration of Ti (< 5 at.%), in the form of TiO2 on the PET treated surface. The TiO2 is probably distributed as an island-like distribution covering the PET surface. Presence of Cu and Ti oxide constituents on the treated PET is beneficial in aiding the adhesion but alone (i.e. without oxygen plasma activation) is not enough to provide very high levels of hydrophilicity as is clear from sessile drop water contact angle measurements on aged samples. Exposure to the plasma treatments leads to a small amount of roughening of the substrate surface, but the average surface roughness in all cases is below 2.5 nm. The PET structure at the interface with a coating is mostly or wholly preserved. The oxygen plasma treatment, metal oxide deposition and surface roughening resulting from the HIPIMS and p-DC treatments will promote adhesion to any subsequent thin film that is deposited immediately following the plasma treatment

    The influence of SiO2 doping on the Ni/ZrO2 supported catalyst for hydrogen production through the glycerol steam reforming reaction

    Get PDF
    The glycerol steam reforming (GSR) reaction for H2 production was studied comparing the performance of Ni supported on ZrO2 and SiO2-ZrO2 catalysts. The surface and bulk properties were determined by ICP, BET, XRD, TPD, TPR, TPO, XPS, SEM and STEM-HAADF. It was suggested that the addition of SiO2 stabilizes the ZrO2 monoclinic structure, restricts the sintering of nickel particles and strengthens the interaction between Ni2+ species and support. It also removes the weak acidic sites and increases the amount of the strong acidic sites, whereas it decreases the amount of the basic sites. Furthermore, it influences the gaseous products’ distribution by increasing H2 yield and not favouring the transformation of CO2 in CO. Thus, a high H2/CO ratio can be achieved accompanying by negligible value for CO/CO2. From the liquid products quantitative analysis, it was suggested that acetone and acetaldehyde were the main products for the Ni/Zr catalyst, for 750oC, whereas for the Ni/SiZr catalyst allyl alcohol was the only liquid product for the same temperature. It was also concluded that the Ni/SiZr sample seems to be more resistant to deactivation however, for both catalysts a substantial amount of carbon exists on the catalytic surface in the shape of carbon nanotubes and amorphous carbon

    Rapid microwave assisted sol-gel synthesis of CeO2 and CexSm1-xO2 nanoparticle catalysts for CO oxidation

    No full text
    CeO2 and CexSm1-xO2 nanoparticle mixed oxides have been synthesized by microwave assisted sol-gel (MW sol-gel) and conventional sol-gel synthesis carried out at 60°C (typical sol-gel) and 100°C (approaching the MW temperature). Different characterization techniques, namely, XRD, BET, Raman, SEM, FTIR, TEM, XPS, H2-TPR, CO2-TPD, and XPS have been employed to understand the process-structure-properties relationship of the catalysts. The CO oxidation performance has been determined both in the absence and in the presence of H2 in the feed gas stream. Microwave heating yields a more thermally stable precursor material, which preserves 75% of its mass up to 600°C, attributable to the different chemical nature of the precursor, compared to the typical sol-gel material with the same composition. Varying the synthesis method has no profound effect on the surface area of the materials, which is in the range 4–35m2/g. Conventional sol-gel synthesis performed at 60 and 100°C yields CeO2 particles with a crystallite size of 29nm and 24nm compared to 21–27nm for MW sol-gel synthesis (at different power values). The MW sol-gel CexSm1-xO2 catalysts exhibit a smaller crystallite size (12–18nm). The pure ceria nanoparticles were shown to have a stoichiometry of approximately CeO1.95. The presence of Ce3+ and Sm3+ in the mixed oxide particles facilitates the presence of oxygen vacant sites, confirmed by Raman. Oxygen mobile species have been traced using H2-TPR studies and a compressive lattice strain in the 0.45–1.9% range of the cubic CexSm1-xO2 lattice were found to be strongly correlated with the CO oxidation performance in the presence and absence of H2 in the oxidation feed stream. MW sol-gel synthesis led to more active CeO2 and Ce0.5Sm0.5O2 catalysts, demonstrated by T50 (temperature where 50% CO conversion is achieved), being reduced by 131°C and 47°C, respectively, compared to typical sol-gel catalysts. Conventional synthesis performed at 100°C leads to a CeO2 catalyst of initially higher activity at a certain temperature window (220–420°C), though with a slower increase of XCO as a function of temperature compared to the MW synthesized catalyst. MW sol-gel synthesized Ce0.8Sm0.2O2 exhibited a high performance (∼90%) for CO oxidation over a period of more than 20h in stream. In addition the effect of reaction temperature and contact time (W/F) on the activity of the CeO2-based materials for CO oxidation kinetics were investigated. The activation energy of the reaction was found to be in the range 36–43kJ/mole depending on the catalyst composition.Abu Dhabi Educational Council (ADEC B3111) and Khalifa University Internal Research Fund (L1 KUIRF-210103) for supporting this research. Work by AFZ and SYA was made possible by the grant number NPRP 6-351-1-072 from the Qatar National Research Fund (a member of Qatar Foundation)

    Ni supported on CaO-MgO-Al 2 O 3 as a highly selective and stable catalyst for H 2 production via the glycerol steam reforming reaction

    No full text
    A comparative study of the GSR performance for Ni/CaO-MgO-Al2O3 and Ni/Al2O3 catalysts is reported. Catalysts were synthesized applying the wet impregnation method at a constant metal loading (8 wt %). Synthesized samples were characterized by N2 adsorption/desorption, ICP, BET, XRD, NH3-TPD, CO2-TPD, H2-TPR, XPS, TEM, STEM-HAADF and EDS. The carbon deposited on their surface under reaction conditions was characterized by TPO, Raman and TEM. It was proven that the use of CaO-MgO as alumina modifiers leads to smaller nickel species crystallite size, increased basicity and surface amount of Ni0 phase. Thus, it increases the conversion to gaseous products favoring H2 and CO2 production to the detriment of CO formation, by enhancing the water gas-shift (WGS) reaction. No liquid products were produced by the Ni/modAl catalyst over 550 °C, whereas time on stream results confirmed that deactivation can be prevented, as apart from decreasing the amount of coke deposition the nature of carbon was altered towards less graphitic and more defective structures

    Effect of operating parameters on the selective catalytic deoxygenation of palm oil to produce renewable diesel over Ni supported on Al2O3, ZrO2 and SiO2 catalysts

    No full text
    The present work investigated the production of Green Diesel through the deoxygenation of palm oil over Ni catalysts supported on γ-Αl2O3, ZrO2 and SiO2 for a continuous flow fixed bed reactor. A comprehensive experimental study was carried out in order to examine the effects of temperature, pressure, LHSV and H2/oil feed ratio on catalytic activity during short (6 h) and long (20 h) time-on-stream experiments. The catalysts were prepared through the wet impregnation method (8 wt.% Ni) and were extensively characterized by N2 adsorption/desorption, XRD, NH3-TPD, CO2-TPD, H2-TPD, H2-TPR, XPS, TEM/HR-TEM and Raman. The characterization of the materials prior to reaction revealed that although relatively small Ni nanoparticles were achieved for all catalysts (4.3 ± 1.6 nm, 6.1 ± 1.8 nm and 6.0 ± 1.8 nm for the Ni/Al2O3, Ni/ZrO2 and Ni/SiO2 catalysts, respectively), NiO was better dispersed on the Ni/ZrO2 catalyst, while the opposite was true for the Ni/SiO2 sample. In the case of Ni/Al2O3, part of Ni could not participate in the reaction due to its entrapment in the NiAl2O4 spinel phase. Regarding performance, although an increase in H2 pressure led to increases in paraffin conversion, the increase of temperature was beneficial only up to a critical value which differed for each catalytic system under consideration (375 oC, 300 oC and 350 oC for the Ni/Al2O3, Ni/ZrO2 and Ni/SiO2 catalysts, respectively). All catalysts favored the deCO2 and deCO deoxygenation paths much more extensively than HDO, irrespective of testing conditions. Time-on-stream experiments showed that all catalysts deactivated after about 6 h, which was attributed to the sintering of the Ni particles and/or their covering by a thin graphitic carbon shell

    Cerium oxide catalysts for oxidative coupling of methane reaction: Effect of lithium, samarium and lanthanum dopants

    No full text
    The work presented herein reports on the oxidative coupling of methane (OCM) performance of a series of Li-free and Li-doped CeO2 and CeO2 modified with Sm3+ and La3+ catalysts. The supporting materials (Ce, Sm-Ce and La-Sm-Ce metal oxides) were synthesized using the microwave assisted sol-gel method in order to achieve nanophase complex materials with increased particle surface energy and reactivity. Lithium ions were added, using the wet impregnation technique, in order to further improve the physicochemical characteristics and reinforce the activity and selectivity, in terms of C2H6 and C2H4 production. All materials were characterized using N2 adsorption-desorption, XRD, Raman spectroscopy, CO2-TPD, H2-TPR, SEM and XPS. We showed that the addition of lithium species changed the reaction pathway and drastically enhanced the production of ethylene and ethane, mainly for the promoted catalysts (Li/Sm-Ce and Li/La-Sm-Ce). In particular, the presence and the synergy between the electrophilic oxygen species (peroxide and superoxide), population of oxygen vacancy sites and the surface moderate basic sites determined the reaction pathway and the desirable product distribution

    Highly selective and stable nickel catalysts supported on ceria promoted with Sm2O3, Pr2O3 and MgO for the CO2 methanation reaction

    No full text
    [Display omitted]•Microwave assisted sol gel method produces selective CO2 methanation Ni catalysts.•The incorporation of Sm3+ and Pr3+ into the CeO2 lattice generates basic positions.•Sm3+ and Pr3+ oxygen vacancies suppress the agglomeration of Ni sites.•Presence of Mg2+ increases basicity and prevents Ni sintering during reaction.•Ni on Pr-Ce highly active, selective and stable for CO2 methanation reaction.The present work reports on the investigation of the catalytic performance for the methanation of CO2 over Ni catalysts based on CeO2, and for the first time, of Ni catalysts supported on binary CeO2-based oxides, namely, Sm2O3-CeO2, Pr2O3-CeO2 and MgO-CeO2. The supports were obtained using the microwave assisted sol-gel method under reflux, while the catalysts were prepared by the wet impregnation method. For the investigation of the morphological, textural, structural and other intrinsic properties of the catalytic materials a variety of characterization techniques were used, i.e., Raman spectroscopy, XRD, N2 physisorption-desorption, CO2-TPD, H2-TPR, H2-TPD, XPS and TEM. Carbon deposition and sintering were investigated using TEM. It was shown that the addition of Sm3+ or Pr3+, incorporated into the lattice of CeO2, generated oxygen vacancies, but the Ni/Pr-Ce catalyst was found to possess more surface oxygen vacancies (e.g. Ce4+-Ov-Pr3+ entities). Moreover, modification of CeO2 using Sm3+ or Pr3+ restricted the agglomeration of nickel active sites and led to the genesis of Lewis basic positions. These characteristics improved the hydrogenation reaction at lower temperature. On the other hand, the addition of Mg2+ resulted at strong metal support interactions reinforcing the resistance of the Ni/Mg-Ce catalyst against sintering. Furthermore, the addition of Sm3+, Pr3+ and Mg2+ cations increased the overall basicity and the moderate adsorption sites and led to the formation of smaller Ni nano particles; these physico-chemical properties enhanced the CO2 methanation reaction. Finally, the activity experiments (WGHSV = 25,000 mL g−1 h−1, H2/CO2 = 4:1, T =350 °C) showed that at lower reaction temperature the Ni/Pr-Ce had the highest catalytic performance in terms of CO2 conversion (54.5%) and CH4 yield (54.5%) and selectivity (100%). The TOF values were found to follow the order Ni/Pr-Ce >> Ni/Mg-Ce > Ni/Sm-Ce > Ni/Ce

    An in depth investigation of deactivation through carbon formation during the biogas dry reforming reaction for Ni supported on modified with CeO2 and La2O3 zirconia catalysts

    Get PDF
    The dry reforming of biogas on a Ni catalyst supported on three commercially available materials (ZrO2, La2O3-ZrO2 and CeO2-ZrO2), has been investigated, paying particular attention to carbon deposition. The DRM efficiency of the catalysts was studied in the temperature range of 500-800oC at three distinct space velocities, and their time-on-stream stability at four temperatures (550, 650, 750 and 800oC) was determined for 10 or 50 h operation. The morphological, textural and other physicochemical characteristics of fresh and spent catalysts together with the amount and type of carbon deposited were examined by a number of techniques including BET-BJH method, CO2 and NH3-TPD, XPS, SEM, TEM, STEM-HAADF, Raman spectroscopy, and TGA/DTG. The impact of the La2O3 and CeO2 modifiers on the DRM performance and time-on-stream stability of the Ni/ZrO2 catalyst was found to be very beneficial: up to 20 and 30% enhancement in CH4 and CO2 conversions respectively, accompanied with a CO-enriched syngas product, while the 50 h time-on-stream catalytic performance deterioration of ~30-35% on Ni/ZrO2 was limited to less than ~15-20% on the La2O3 and CeO2 modified samples. Their influence on the amount and type of carbon formed was substantial: it was revealed that faster oxidation of the deposited carbon at elevated temperatures occurs on the modified catalysts. Correlations between the La2O3 and CeO2-induced modifications on the surface characteristics and physicochemical properties of the catalyst with their concomitant support-mediated effects on the overall DRM performance and carbon deposition were revealed
    corecore