205 research outputs found

    Angular dependence of domain wall resistivity in SrRuO3_{{\bf 3}} films

    Full text link
    SrRuO3{\rm SrRuO_3} is a 4d itinerant ferromagnet (Tc_{c} ∌\sim 150 K) with stripe domain structure. Using high-quality thin films of SrRuO3_{3} we study the resistivity induced by its very narrow (∌3\sim 3 nm) Bloch domain walls, ρDW\rho_{DW} (DWR), at temperatures between 2 K and Tc_{c} as a function of the angle, Ξ\theta , between the electric current and the ferromagnetic domains walls. We find that ρDW(T,Ξ)=sin⁥2ΞρDW(T,90)+B(Ξ)ρDW(T,0)\rho_{DW}(T,\theta)=\sin^2\theta \rho_{DW}(T,90)+B(\theta)\rho_{DW}(T,0) which provides the first experimental indication that the angular dependence of spin accumulation contribution to DWR is sin⁥2Ξ\sin^2\theta. We expect magnetic multilayers to exhibit a similar behavior.Comment: 5 pages, 5 figure

    Impact of left ventricular ejection fraction on clinical outcomes after left main coronary artery revascularization

    Get PDF
    Aim: To evaluate the impact of left ventricular ejection fraction (LVEF) on 3-year outcomes in patients with left main coronary artery disease (LMCAD) undergoing percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG) in the EXCEL trial. Methods and results: The EXCEL trial randomized patients with LMCAD to PCI with everolimus-eluting stents (n = 948) or CABG (n = 957). Among 1804 patients with known baseline LVEF, 74 (4.1%) had LVEF <40% [heart failure with reduced ejection fraction (HFrEF)], 152 (8.4%) LVEF 40–49% [heart failure with mid-range ejection fraction (HFmrEF)] and 1578 (87.5%) LVEF ≄50% (heart failure with preserved ejection fraction). Patients with HFrEF vs. HFmrEF vs. preserved LVEF experienced a longer postoperative hospital stay (9.0 vs. 7.0 vs. 6.0 days, P = 0.02) with greater peri-procedural complications after CABG, while hospital stay after PCI was unaffected by LVEF (1.5 vs. 2.0 vs. 1.0 days, P = 0.20). The composite primary endpoint of death, stroke, or myocardial infarction at 3 years was 29.3% (PCI) vs. 27.6% (CABG) in patients with HFrEF, 16.2% vs. 15.0% in patients with HFmrEF, and 14.5% vs. 14.6% in those with preserved LVEF, respectively (Pinteraction = 0.90). Smoothing spline analysis demonstrated that the 3-year risk of all-cause death increased when LVEF decreased, both in patients undergoing CABG and PCI. Conclusion: In the EXCEL trial, the composite rate of death, stroke or myocardial infarction at 3 years was significantly higher in patients with HFrEF compared with HFmrEF or preserved LVEF, driven by an increased rate of all-cause death. No significant differences after PCI vs. CABG were observed among patients with HFrEF, HFmrEF and preserved LVEF. Longer-term follow-up could provide important insights on differences in clinical outcomes that might emerge over time. Clinical Trial Registration: ClinicalTrials.gov ID NCT01205776

    Active Galactic Nuclei at the Crossroads of Astrophysics

    Get PDF
    Over the last five decades, AGN studies have produced a number of spectacular examples of synergies and multifaceted approaches in astrophysics. The field of AGN research now spans the entire spectral range and covers more than twelve orders of magnitude in the spatial and temporal domains. The next generation of astrophysical facilities will open up new possibilities for AGN studies, especially in the areas of high-resolution and high-fidelity imaging and spectroscopy of nuclear regions in the X-ray, optical, and radio bands. These studies will address in detail a number of critical issues in AGN research such as processes in the immediate vicinity of supermassive black holes, physical conditions of broad-line and narrow-line regions, formation and evolution of accretion disks and relativistic outflows, and the connection between nuclear activity and galaxy evolution.Comment: 16 pages, 5 figures; review contribution; "Exploring the Cosmic Frontier: Astrophysical Instruments for the 21st Century", ESO Astrophysical Symposia Serie

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    What is the Oxygen Isotope Composition of Venus? The Scientific Case for Sample Return from Earth’s “Sister” Planet

    Get PDF
    Venus is Earth’s closest planetary neighbour and both bodies are of similar size and mass. As a consequence, Venus is often described as Earth’s sister planet. But the two worlds have followed very different evolutionary paths, with Earth having benign surface conditions, whereas Venus has a surface temperature of 464 °C and a surface pressure of 92 bar. These inhospitable surface conditions may partially explain why there has been such a dearth of space missions to Venus in recent years.The oxygen isotope composition of Venus is currently unknown. However, this single measurement (Δ17O) would have first order implications for our understanding of how large terrestrial planets are built. Recent isotopic studies indicate that the Solar System is bimodal in composition, divided into a carbonaceous chondrite (CC) group and a non-carbonaceous (NC) group. The CC group probably originated in the outer Solar System and the NC group in the inner Solar System. Venus comprises 41% by mass of the inner Solar System compared to 50% for Earth and only 5% for Mars. Models for building large terrestrial planets, such as Earth and Venus, would be significantly improved by a determination of the Δ17O composition of a returned sample from Venus. This measurement would help constrain the extent of early inner Solar System isotopic homogenisation and help to identify whether the feeding zones of the terrestrial planets were narrow or wide.Determining the Δ17O composition of Venus would also have significant implications for our understanding of how the Moon formed. Recent lunar formation models invoke a high energy impact between the proto-Earth and an inner Solar System-derived impactor body, Theia. The close isotopic similarity between the Earth and Moon is explained by these models as being a consequence of high-temperature, post-impact mixing. However, if Earth and Venus proved to be isotopic clones with respect to Δ17O, this would favour the classic, lower energy, giant impact scenario.We review the surface geology of Venus with the aim of identifying potential terrains that could be targeted by a robotic sample return mission. While the potentially ancient tessera terrains would be of great scientific interest, the need to minimise the influence of venusian weathering favours the sampling of young basaltic plains. In terms of a nominal sample mass, 10 g would be sufficient to undertake a full range of geochemical, isotopic and dating studies. However, it is important that additional material is collected as a legacy sample. As a consequence, a returned sample mass of at least 100 g should be recovered.Two scenarios for robotic sample return missions from Venus are presented, based on previous mission proposals. The most cost effective approach involves a “Grab and Go” strategy, either using a lander and separate orbiter, or possibly just a stand-alone lander. Sample return could also be achieved as part of a more ambitious, extended mission to study the venusian atmosphere. In both scenarios it is critical to obtain a surface atmospheric sample to define the extent of atmosphere-lithosphere oxygen isotopic disequilibrium. Surface sampling would be carried out by multiple techniques (drill, scoop, “vacuum-cleaner” device) to ensure success. Surface operations would take no longer than one hour.Analysis of returned samples would provide a firm basis for assessing similarities and differences between the evolution of Venus, Earth, Mars and smaller bodies such as Vesta. The Solar System provides an important case study in how two almost identical bodies, Earth and Venus, could have had such a divergent evolution. Finally, Venus, with its runaway greenhouse atmosphere, may provide data relevant to the understanding of similar less extreme processes on Earth. Venus is Earth’s planetary twin and deserves to be better studied and understood. In a wider context, analysis of returned samples from Venus would provide data relevant to the study of exoplanetary systems

    Theoretical basis for the Dubinin-Radushkevitch (D-R) adsorption isotherm equation

    Full text link
    The Dubinin-Radushkevitch (D-R) equation, which was originally proposed as an empirical adaptation The Polanyi adsorption potential theory, has been the fundamental equation to quantitatively describe the adsorption gases and vapors by microporous sorbents. The equation, based on the postulate that the mechanism for adsorption in micropores is that of pore-filling rather than layer-by-layer surface coverage, generally applies well to adsorption systems involving only van der Waals forces and is especially useful to describe adsorption on activated ???. The ability of the D-R equation to describe gas adsorption on porous materials has inspired many to undertake studies, both experimental and theoretical, to explain the source of the success of the D-R equation in ??? of molecular properties at the gas-solid interface. In many cases, these studies have led to extensions or modifications of the original D-R equation. Many of these attempts and the resulting extensions are reviewed and discussed here. Recently, an isotherm equation was derived for adsorption of gases and vapors on microporous ??? from statistical mechanical principles. It was shown that the D-R equation is an approximated form of this potential theory isotherm. This development is also reviewed and discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43972/1/10450_2005_Article_BF01650130.pd
    • 

    corecore