26 research outputs found

    Development and radiotherapeutic application of /sup 211/At-labeled radiopharmaceuticals. Progress report, March 1, 1981-February 28, 1982

    No full text
    This project is concerned with developing the potential of alpha-emitting radionuclides as agents for radiotherapy. Alpha-emitters seem ideally suited for his application because their high linear energy transfer and short range permit the deposition of considerable energy in a very small volume of tissue. Unlike the beta particles of /sup 131/I which have a range of about 1 to 2 mm in tissue, 5 to 7 MeV alpha particles would traverse only a few cell diameters. Among the available alpha-emitters, /sup 211/At appears most promising for therapeutic applications because, (1) it has some chemical similarities to iodine, an element that can readily be incorporated into numerous proteins and peptides, (2) it has a half-life that is long enough to permit chemical manipulation yet short enough to minimize destruction of healthy cells due to degradation of the label over time, (3) it can be produced conveniently using a cyclotron, and (4) alpha emission is associated with 100% of its decays with no accompanying beta emission. In the past year the evaluation of an astatine-tellurium colloid as an agent for the destruction of malignant ascites has been completed. The therapeutic efficacy of /sup 211/At-tellurium colloid has been compared with that of several beta-emitting radiocolloids. Studies on the application of monoclonal antibodies as carriers for selective delineation and destruction of malignant cell populations have also been initiated

    R�ntgenbestrahlung isolierter Leber-Zellkerne

    No full text
    corecore