11 research outputs found

    The effect of the annealing temperature on the local distortion of La0.67_{0.67}Ca0.33_{0.33}MnO3_3 thin films

    Full text link
    Mn KK-edge fluorescence data are presented for thin film samples (3000~\AA) of Colossal Magnetoresistive (CMR) La0.67_{0.67}Ca0.33_{0.33}MnO3_3: as-deposited, and post-annealed at 1000 K and 1200 K. The local distortion is analyzed in terms of three contributions: static, phonon, and an extra, temperature-dependent, polaron term. The polaron distortion is very small for the as-deposited sample and increases with the annealing temperature. In contrast, the static distortion in the samples decreases with the annealing temperature. Although the local structure of the as-deposited sample shows very little temperature dependence, the change in resistivity with temperature is the largest of these three thin film samples. The as-deposited sample also has the highest magnetoresistance (MR), which indicates some other mechanism may also contribute to the transport properties of CMR samples. We also discuss the relationship between local distortion and the magnetization of the sample.Comment: 11 pages of Preprint format, 8 figures in one tar fil

    Spatial distribution of photoelectrons participating in formation of x-ray absorption spectra

    Full text link
    Interpretation of x-ray absorption near-edge structure (XANES) experiments is often done via analyzing the role of particular atoms in the formation of specific peaks in the calculated spectrum. Typically, this is achieved by calculating the spectrum for a series of trial structures where various atoms are moved and/or removed. A more quantitative approach is presented here, based on comparing the probabilities that a XANES photoelectron of a given energy can be found near particular atoms. Such a photoelectron probability density can be consistently defined as a sum over squares of wave functions which describe participating photoelectron diffraction processes, weighted by their normalized cross sections. A fine structure in the energy dependence of these probabilities can be extracted and compared to XANES spectrum. As an illustration of this novel technique, we analyze the photoelectron probability density at the Ti K pre-edge of TiS2 and at the Ti K-edge of rutile TiO2.Comment: Journal abstract available on-line at http://link.aps.org/abstract/PRB/v65/e20511

    Possible charge inhomogeneities in the CuO2 planes of YBa2Cu3O6+x (x=0.25, 0.45, 0.65, 0.94) from pulsed neutron diffraction

    Full text link
    The atomic pair distribution functions (PDF) of four powder samples of YBa2Cu3O6+x (x=0.25, 0.45, 0.65, 0.94) at 15 K have been measured by means of pulsed neutron diffraction. The PDF is modelled using a full-profile fitting approach to yield structural parameters. In contrast to earlier XAFS work we find no evidence of a split apical oxygen site. However, a slightly improved fit over the average crystallographic model results when the planar Cu(2) site is split along the z-direction. This is interpreted in terms of charge inhomogeneities in the CuO2 planes.Comment: 8 pages, 3 figure

    Nanocomposites of magnetic cobalt nanoparticles and cellulose

    No full text
    Polymeric matrices with stabilized metallic nanoparticles constitute an important class of nanostructured materials, because polymer technology allows fabrication of components with various electronic, magnetic and mechanical properties. The porous cellulose matrix has been shown to be a useful support material for platinum, palladium, silver, copper and nickel nanoparticles. In the present study, nanosized cobalt particles with enhanced magnetic properties were made by chemical reduction within a microcrystalline cellulose (MCC) matrix. Two different chemical reducers, NaBH4 and NaH2PO2, were used, and the so-formed nanoparticles were characterized with X-ray absorption spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. These experimental techniques were used to gain insight into the effect of different synthesis routes on structural properties of the nanoparticles. Magnetic properties of the nanoparticles were studied using a vibrating sample magnetometer. Particles made via the NaBH4 reduction were amorphous Co–B or Co oxide composites with diminished ferromagnetic behaviour and particles made via the NaH2PO2 reduction were well-ordered ferromagnetic hcp cobalt nanocrystals

    Local and average crystal structure and displacements of La

    No full text
    Measurements of both the average crystal structure from Rietveld refinement of neutron powder diffraction (NPD) data and the local structure from La L{sub III}-edge x-ray-absorption fine-structure (XAFS) are presented for a La{sup 11}B{sub 6} sample as a function of temperature ({approx}10-320 K). These data are compared to XAFS results on a EuB{sub 6} sample. The single-site La and B positional distribution widths and the La-B and La-La bond length distribution widths and their temperature dependence are compared. This comparison allows an estimate of the La and B site displacements, and we find that these sublattices are only slightly correlated with each other. Moreover, while the temperature dependence of the displacement parameters of the average sites from diffraction fit an Einstein model well, the temperature dependence of the La-B bond length distribution width requires at least two vibrational frequencies, corresponding to the La and B frequencies of the individual sites. XAFS data on EuB{sub 6} indicate that the situation is the same in the Eu compound. In addition, comparisons between data taken below and above the ferromagnetic transition temperature for EuB{sub 6} place stringent limits on the lattice involvement in the associated metal-insulator transition and the ensuing large magnetoresistance effect. This lack of lattice involvement in the magnetoresistance transition is in sharp contrast to the strong lattice involvement observed in the colossal magnetoresistance lanthanum manganese perovskites

    Effects of lattice disorder in the UCu

    No full text
    The UCu(5-x)Pd(x) system exhibits non-Fermi liquid (NFL) in the thermodynamic and transport properties at low temperatures for Pd concentrations 0.9 <~ x <~ 1.5. The local structure around the U, Cu, and Pd atoms has been measured for 0 <= x <= 1.5 using the X-ray Absorption Fine Structure (XAFS) technique in order to quantify the effects of lattice disorder on the NFL properties. A model which allows a percentage of the Pd atoms to occupy nominal Cu (16e) sites, s, was used to fit the Pd and Cu K edge and U L(III) edge data. Pd/Cu site interchange was found to occur in all samples (x != 0), reaching a minimum value of s ~0.17 at x = 0.7 and increasing monotonically to s ~ 0.4 at x=1.5. These data also determine the static disorder the nearest neighbor U--Cu pairs. The results indicate that the measured U--Cu static disorder is not sufficient to explain the NFL behavior of the magnetic susceptibility within the single-ion Kondo disorder model and casts doubt on the applicability of this model to UCu(5-x)Pd(x).Comment: 14 pages, 12 EPS figures, Phys. Rev. B, in pres
    corecore