17 research outputs found

    The Hamilton-Jacobi treatment for non-abelian Chern-Simons system

    Get PDF
    The non-abelian Chern-Simons field interacting with NN component complex field is treated as a constrained system using the Hamilton-Jacobi approach. The reduced phase space Hamiltonian density is obtained without introducing Lagrange multipliers and with out any additional gauge fixing condition. The quantization of this system is also discussed.Comment: 7 pages, Late

    Fractional conservation laws in optimal control theory

    Full text link
    Using the recent formulation of Noether's theorem for the problems of the calculus of variations with fractional derivatives, the Lagrange multiplier technique, and the fractional Euler-Lagrange equations, we prove a Noether-like theorem to the more general context of the fractional optimal control. As a corollary, it follows that in the fractional case the autonomous Hamiltonian does not define anymore a conservation law. Instead, it is proved that the fractional conservation law adds to the Hamiltonian a new term which depends on the fractional-order of differentiation, the generalized momentum, and the fractional derivative of the state variable.Comment: The original publication is available at http://www.springerlink.com Nonlinear Dynamic

    Fractional Hamilton formalism within Caputo's derivative

    Full text link
    In this paper we develop a fractional Hamiltonian formulation for dynamic systems defined in terms of fractional Caputo derivatives. Expressions for fractional canonical momenta and fractional canonical Hamiltonian are given, and a set of fractional Hamiltonian equations are obtained. Using an example, it is shown that the canonical fractional Hamiltonian and the fractional Euler-Lagrange formulations lead to the same set of equations.Comment: 8 page

    Cosmological perturbations in FRW model with scalar field within Hamilton-Jacobi formalism and symplectic projector method

    Full text link
    The Hamilton-Jacobi analysis is applied to the dynamics of the scalar fluctuations about the Friedmann-Robertson-Walker (FRW). The gauge conditions are found from the consistency conditions. The physical degrees of freedom of the model are obtain by symplectic projector method. The role of the linearly dependent Hamiltonians and the gauge variables in Hamilton-Jacobi formalism is discussed.Comment: 11 page

    Time-Fractional KdV Equation: Formulation and Solution using Variational Methods

    Full text link
    In this work, the semi-inverse method has been used to derive the Lagrangian of the Korteweg-de Vries (KdV) equation. Then, the time operator of the Lagrangian of the KdV equation has been transformed into fractional domain in terms of the left-Riemann-Liouville fractional differential operator. The variational of the functional of this Lagrangian leads neatly to Euler-Lagrange equation. Via Agrawal's method, one can easily derive the time-fractional KdV equation from this Euler-Lagrange equation. Remarkably, the time-fractional term in the resulting KdV equation is obtained in Riesz fractional derivative in a direct manner. As a second step, the derived time-fractional KdV equation is solved using He's variational-iteration method. The calculations are carried out using initial condition depends on the nonlinear and dispersion coefficients of the KdV equation. We remark that more pronounced effects and deeper insight into the formation and properties of the resulting solitary wave by additionally considering the fractional order derivative beside the nonlinearity and dispersion terms.Comment: The paper has been rewritten, 12 pages, 3 figure

    Fractional Dynamics of Relativistic Particle

    Full text link
    Fractional dynamics of relativistic particle is discussed. Derivatives of fractional orders with respect to proper time describe long-term memory effects that correspond to intrinsic dissipative processes. Relativistic particle subjected to a non-potential four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u_{\mu} u^{\mu}+c^2=0, where c is a speed of light in vacuum. In the general case, the fractional dynamics of relativistic particle is described as non-Hamiltonian and dissipative. Conditions for fractional relativistic particle to be a Hamiltonian system are considered
    corecore