1,020 research outputs found
Synthesis of a novel monomer “DDTU-IDI” for the development of low-shrinkage dental resin composites
ObjectiveThe current dental resin composites often suffer from polymerization shrinkage, which can lead to microleakage and potentially result in recurring tooth decay. This study presents the synthesis of a novel monomer, (3,9-diethyl-1,5,7,11-tetraoxaspiro[5,5]undecane-3,9-diyl)bis(methylene) bis((2-(3-(prop-1-en-2-yl)phenyl)propan-2-yl)carbamate) (DDTU-IDI), and evaluates its effect in the formulation of low-shrinkage dental resin composites.MethodsDDTU-IDI was synthesized through a two-step reaction route, with the initial synthesis of the required raw material monomer 3,9-diethyl-3,9-dihydroxymethyl-1,5,7,11-tetraoxaspiro-[5,5] undecane (DDTU). The structures were confirmed using Fourier-transform infrared (FT-IR) spectroscopy and hydrogen nuclear magnetic resonance (1HNMR) spectroscopy. Subsequently, DDTU-IDI was incorporated into Bis-GMA-based composites at varying weight percentages (5, 10, 15, and 20 wt%). The polymerization reaction, degree of conversion, polymerization shrinkage, mechanical properties, physicochemical properties and biocompatibility of the low-shrinkage composites were thoroughly evaluated. Furthermore, the mechanical properties were assessed after a thermal cycling test with 10,000 cycles to determine the stability.ResultsThe addition of DDTU-IDI at 10, 15, and 20 wt% significantly reduced the polymerization volumetric shrinkage of the experimental resin composites, without compromising the degree of conversion, mechanical and physicochemical properties. Remarkably, at a monomer content of 20 wt%, the polymerization shrinkage was reduced to 1.83 ± 0.53%. Composites containing 10, 15, and 20 wt% DDTU-IDI exhibited lower water sorption and higher contact angle. Following thermal cycling, the composites exhibited no significant decrease in mechanical properties, except for the flexural properties.Significance. DDTU-IDI has favorable potential as a component which could produce volume expansion and increase rigidity in the development of low-shrinkage dental resin composites. The development of low-shrinkage composites containing DDTU-IDI appears to be a promising strategy for reducing polymerization shrinkage, thereby potentially enhancing the longevity of dental restorations
Interplay of disorder and magnetic field in the superconducting vortex state
We calculate the density of states of an inhomogeneous superconductor in a
magnetic field where the positions of vortices are distributed completely at
random. We consider both the cases of s-wave and d-wave pairing. For both
pairing symmetries either the presence of disorder or increasing the density of
vortices enhances the low energy density of states. In the s-wave case the gap
is filled and the density of states is a power law at low energies. In the
d-wave case the density of states is finite at zero energy and it rises
linearly at very low energies in the Dirac isotropic case
(\alpha_D=t/\Delta_0=1, where t is the hopping integral and \Delta_0 is the
amplitude of the order parameter). For slightly higher energies the density of
states crosses over to a quadratic behavior. As the Dirac anisotropy increases
(as \Delta_0 decreases with respect to the hopping term) the linear region
decreases in width. Neglecting this small region the density of states
interpolates between quadratic and back to linear as \alpha_D increases. The
low energy states are strongly peaked near the vortex cores.Comment: 12 REVTeX pages, 15 figure
A Generative and Mutational Approach for Synthesizing Bug-exposing Test Cases to Guide Compiler Fuzzing
Random test case generation, or fuzzing, is a viable means for uncovering compiler bugs. Unfortunately, compiler fuzzing can be
time-consuming and inefficient with purely randomly generated
test cases due to the complexity of modern compilers. We present
ComFuzz, a focused compiler fuzzing framework. ComFuzz aims to
improve compiler fuzzing efficiency by focusing on testing components and language features that are likely to trigger compiler bugs.
Our key insight is human developers tend to make common and
repeat errors across compiler implementations; hence, we can leverage the previously reported buggy-exposing test cases of a programming language to test a new compiler implementation. To this end,
ComFuzz employs deep learning to learn a test program generator
from open-source projects hosted on GitHub. With the machinegenerated test programs in place, ComFuzz then leverages a set
of carefully designed mutation rules to improve the coverage and
bug-exposing capabilities of the test cases. We evaluate ComFuzz
on 11 compilers for JS and Java programming languages. Within
260 hours of automated testing runs, we discovered 33 unique bugs
across nine compilers, of which 29 have been confirmed and 22,
including an API documentation defect, have already been fixed by
the developers. We also compared ComFuzz to eight prior fuzzers
on four evaluation metrics. In a 24-hour comparative test, ComFuzz
uncovers at least 1.5× more bugs than the state-of-the-art baselines
Semiclassical theory of transport in a random magnetic field
We study the semiclassical kinetics of 2D fermions in a smoothly varying
magnetic field . The nature of the transport depends crucially on
both the strength of the random component of and its mean
value . For , the governing parameter is ,
where is the correlation length of disorder and is the Larmor radius
in the field . While for the Drude theory applies, at
most particles drift adiabatically along closed contours and are
localized in the adiabatic approximation. The conductivity is then determined
by a special class of trajectories, the "snake states", which percolate by
scattering at the saddle points of where the adiabaticity of their
motion breaks down. The external field also suppresses the diffusion by
creating a percolation network of drifting cyclotron orbits. This kind of
percolation is due only to a weak violation of the adiabaticity of the
cyclotron rotation, yielding an exponential drop of the conductivity at large
. In the regime the crossover between the snake-state
percolation and the percolation of the drift orbits with increasing
has the character of a phase transition (localization of snake states) smeared
exponentially weakly by non-adiabatic effects. The ac conductivity also
reflects the dynamical properties of particles moving on the fractal
percolation network. In particular, it has a sharp kink at zero frequency and
falls off exponentially at higher frequencies. We also discuss the nature of
the quantum magnetooscillations. Detailed numerical studies confirm the
analytical findings. The shape of the magnetoresistivity at is
in good agreement with experimental data in the FQHE regime near .Comment: 22 pages REVTEX, 14 figure
Slater-Pauling Behavior of the Half-Ferromagnetic Full-Heusler Alloys
Using the full-potential screened Korringa-Kohn-Rostoker method we study the
full-Heusler alloys based on Co, Fe, Rh and Ru. We show that many of these
compounds show a half-metallic behavior, however in contrast to the
half-Heusler alloys the energy gap in the minority band is extremely small.
These full-Heusler compounds show a Slater-Pauling behavior and the total
spin-magnetic moment per unit cell (M_t) scales with the total number of
valence electrons (Z_t) following the rule: M_t=Z_t-24. We explain why the
spin-down band contains exactly 12 electrons using arguments based on the group
theory and show that this rule holds also for compounds with less than 24
valence electrons. Finally we discuss the deviations from this rule and the
differences compared to the half-Heusler alloys.Comment: 10 pages, 8 figures, revised figure 3, new text adde
Three chromosome-scale Papaver genomes reveal punctuated patchwork evolution of the morphinan and noscapine biosynthesis pathway
Papaver species P. setigerum, P. rhoeas, and P. somniferum accumulates different levels of morphine and noscapine. Here, the authors report the improved genome assembly of P. somniferum and de novo assembly of the other two species, and reveal the evolution of the benzylisoquinoline alkaloids biosynthetic pathway.For millions of years, plants evolve plenty of structurally diverse secondary metabolites (SM) to support their sessile lifestyles through continuous biochemical pathway innovation. While new genes commonly drive the evolution of plant SM pathway, how a full biosynthetic pathway evolves remains poorly understood. The evolution of pathway involves recruiting new genes along the reaction cascade forwardly, backwardly, or in a patchwork manner. With three chromosome-scale Papaver genome assemblies, we here reveal whole-genome duplications (WGDs) apparently accelerate chromosomal rearrangements with a nonrandom distribution towards SM optimization. A burst of structural variants involving fusions, translocations and duplications within 7.7 million years have assembled nine genes into the benzylisoquinoline alkaloids gene cluster, following a punctuated patchwork model. Biosynthetic gene copies and their total expression matter to morphinan production. Our results demonstrate how new genes have been recruited from a WGD-induced repertoire of unregulated enzymes with promiscuous reactivities to innovate efficient metabolic pathways with spatiotemporal constraint.Computer Science
Measurements of the observed cross sections for exclusive light hadron production in e^+e^- annihilation at \sqrt{s}= 3.773 and 3.650 GeV
By analyzing the data sets of 17.3 pb taken at GeV
and 6.5 pb taken at GeV with the BESII detector at the
BEPC collider, we have measured the observed cross sections for 12 exclusive
light hadron final states produced in annihilation at the two energy
points. We have also set the upper limits on the observed cross sections and
the branching fractions for decay to these final states at 90%
C.L.Comment: 8 pages, 5 figur
Search for the Rare Decays J/Psi --> Ds- e+ nu_e, J/Psi --> D- e+ nu_e, and J/Psi --> D0bar e+ e-
We report on a search for the decays J/Psi --> Ds- e+ nu_e + c.c., J/Psi -->
D- e+ nu_e + c.c., and J/Psi --> D0bar e+ e- + c.c. in a sample of 5.8 * 10^7
J/Psi events collected with the BESII detector at the BEPC. No excess of signal
above background is observed, and 90% confidence level upper limits on the
branching fractions are set: B(J/Psi --> Ds- e+ nu_e + c.c.)<4.8*10^-5, B(J/Psi
--> D- e+ nu_e + c.c.) D0bar e+ e- + c.c.)<1.1*10^-5Comment: 10 pages, 4 figure
- …